Answer:
If a certain cone with a height of 9 inches has volume V = 3πx2 + 42πx + 147π, what is the cone’s radius r in terms of x?
Step-by-step explanation:
V = 3πx2 + 42πx + 147π
V=3π(x2 + 14x +49)
9.42(x2 + 14x +49)
9.42(x2 + 14x +14) -14 + 49= 0
9.42(x + 7)^2 + 35= 0
9.42(9.42(x + 7)^2 = - 35)9.42
(x + 7)^2 = - 35/9.42)
√(x + 7)^2=√- 35/9.42
x + 7 = - 1.927
x= - 1.927 - 7
x= - 8.927
V = 3π(- 8.927)^2 + 42π(- 8.927) + 147π
V=750.69 - 1177.29 + 461.58
<u>V=34.98</u>
h= 9 inches
V = 13πr2h
34.98 = 13(3.14) (r^2) (h)
34.98 = 40.82 (r^2) 9
34.98 = 367.38 r^2
34.98/ 367.38 = 367.38 r^2/ 367.38
0.095= r^2
Answer:

Step-by-step explanation:
step 1
<em>Calculate the volume of the cylinder (flower vase)</em>
The volume is equal to

we have
-----> the radius is half the diameter

substitute the values
------> exact value
step 2
Calculate 2/3 of the volume

2:12 is an equivalent ratio
Answer:
16x^2 + 9x^2 + 9x + 13.
Step-by-step explanation:
6x^3 + 8x^2 – 2x + 4 +10x^3 + x^2 + 11x + 9
Bringing like terms together:
= 6x^3 + 10x^3 + 8x^2 + x^2 - 2x + 11x + 4 + 9
= 16x^2 + 9x^2 + 9x + 13. (answer).
Answer:
x-intercept(s): ( -1, 0 ) , ( -3, 0 )
y-intercept(s): ( 0, 3)