Answer:
0.075M
Explanation:
-The concentration of a solution is defined as the mass of the solute divided by the volume of the solution:

-We the solve the molarity problem as follows:

Hence, the concentration of the dilute solution is 0.075M
Answer:
answer is A. Alkaline metal lose two electrons not gain
I am guessing that your solutions of HCl and of NaOH have approximately the same concentrations. Then the equivalence point will occur at pH 7 near 25 mL NaOH.
The steps are already in the correct order.
1. Record the pH when you have added 0 mL of NaOH to your beaker containing 25 mL of HCl and 25 mL of deionized water.
2. Record the pH of your partially neutralized HCl solution when you have added 5.00 mL of NaOH from the buret.
3. Record the pH of your partially neutralized HCl solution when you have added 10.00 mL, 15.00 mL and 20.00 mL of NaOH.
4. Record the NaOH of your partially neutralized HCl solution when you have added 21.00 mL, 22.00 mL, 23.00 mL and 24.00 mL of NaOH.
5. Add NaOH one drop at a time until you reach a pH of 7.00, then record the volume of NaOH added from the buret ( at about 25 mL).
6. Record the pH of your basic HCl-NaOH solution when you have added 26.00 mL, 27.00 mL, 28.00 mL, 29.00 mL and 30.00 mL of NaOH.
7. Record the pH of your basic HCl-NaOH solution when you have added 35.00 mL, 40.00 mL, 45.00 mL and 50.00 mL of NaOH from your 50mL buret.
The three main types of lipids are triglycerides, steroids and phospholipids
Answer:
The answer is "10.84 g".
Explanation:
The formula for calculating the number for moles:

In the given acid nitric:
Owing to the nitric acid mass = 
Nitric acid molar weight
If they put values above the formula, they receive:


In the given chemical equation:

In this reaction, 2 mols of nitric acid are produced by 1 mole of water.
So, 1.204 moles of nitric acid will be produced:

We are now using Equation 1 in determining the quantity of water:
Water moles 
Water weight molar 

