Complete question:
A taut rope has a mass of 0.123 kg and a length of 3.54 m. What average power must be supplied to the rope to generate sinusoidal waves that have amplitude 0.200 m and wavelength 0.600 m if the waves are to travel at 28.0 m/s ?
Answer:
The average power supplied to the rope to generate sinusoidal waves is 1676.159 watts.
Explanation:
Velocity = Frequency X wavelength
V = Fλ ⇒ F = V/λ
F = 28/0.6 = 46.67 Hz
Angular frequency (ω) = 2πF = 2π (46.67) = 93.34π rad/s
Average power supplied to the rope will be calculated as follows

where;
ω is the angular frequency
A is the amplitude
V is the velocity
μ is mass per unit length = 0.123/3.54 = 0.0348 kg/m
= 1676.159 watts
The average power supplied to the rope to generate sinusoidal waves is 1676.159 watts.
Answer:
107.4 meters
Explanation:
gravity is 9.8m/s^2
max height = (velocity squared times sin squared angle) ÷ ( speed of gravity times 2 )
max height = (48 squared times sin of 73 squared) ÷ ( 9.8 times 2 )
Talking about a quantity of inertia is exactly the same as talking about a quantity of mass. So, if the boxes are anywhere near the same size, then the box of books has <u><em>more</em></u> inertia than the box of cotton balls, because books have more mass than an identical volume of cotton.
Answer:

Given:
Radius of curvature (R) of a spherical mirror = 20
To Find:
Focal length (f)
Explanation:
Formula:

Substituting value of R in the equation:


