Answer:
Explanation:Explanation is ly/3a8Nt8nin a file
bit.
Refer to the diagram shown below.
In 2.4 hours, the distance traveled by the first airplane heading a 51.3° at 750 mph is
a = 750*2.4 = 1800 miles.
The second airplane travels
b = 620*2.4 = 1488 mile
The angle between the two airplanes is
163° - 51.3° = 111.7°
Let c = the distance between the two airplanes after 2.4 hours.
From the Law of Cosines, obtain
c² = a² + b² - 2ab cos(111.7°)
= 3.24 x 10⁶ + 2.2141 x 10⁶
c = 2335.41 miles
Answer: 2335.4 miles
Answer:
A) a = 73.304 rad/s²
B) Δθ = 3665.2 rad
Explanation:
A) From Newton's first equation of motion, we can say that;
a = (ω - ω_o)/t. We are given that the centrifuge spins at a maximum rate of 7000rpm.
Let's convert to rad/s = 7000 × 2π/60 = 733.04 rad/s
Thus change in angular velocity = (ω - ω_o) = 733.04 - 0 = 733.04 rad/s
We are given; t = 10 s
Thus;
a = 733.04/10
a = 73.304 rad/s²
B) From Newton's third equation of motion, we can say that;
ω² = ω_o² + 2aΔθ
Where Δθ is angular displacement
Making Δθ the subject;
Δθ = (ω² - ω_o²)/2a
At this point, ω = 0 rad/s while ω_o = 733.04 rad/s
Thus;
Δθ = (0² - 733.04²)/(2 × 73.304)
Δθ = -537347.6416/146.608
Δθ = - 3665.2 rad
We will take the absolute value.
Thus, Δθ = 3665.2 rad
The main requirement for a good conductor of electricity is to have a lot of valence electrons. Valence electrons are the electrons of the outer shells of atoms not bound with other atoms (for example through covalent bounds). These electrons are "free to escape" as soon as an electric field with enough intensity is applied to the material, and therefore these electrons will be free to move in the material producing an electric current.