B. It is the heat required to change a gram of substance from solid to liquid
Enthalpy change during the dissolution process = m c ΔT,
here, m = total mass = 475 + 125 = 600 g
c = <span>specific heat of water = 4.18 J/g °C
</span>ΔT = 7.8 - 24 = -16.2 oc (negative sign indicates that temp. has decreases)
<span>
Therefore, </span>Enthalpy change during the dissolution = 600 x 4.18 X (-16.2)
= -40630 kJ
(Negative sign indicates that process is endothermic in nature i.e. heat is taken by the system)
Thus, <span>enthalpy of dissolving of the ammonium nitrate is -40630 J/g</span>
Hello there,
Rocks that were once swampy sediments or peat beds contain carbon and are black, soft, and fossiliferous<span>.(also known as organic sedimentary rock)
</span>
Hope this helps :)
~Top
Answer:
The answer to your question is below
Explanation:
An atom with four electrons in its valence shell is capable of forming:
single bonds and atom with the described characteristics, can form 4 single bonds or a combination of single bonds and double or triple bonds. Ex alkanes
double bonds this atom can form one double bond and two single bonds or two double bonds. Ex alkenes
triple bonds this atom can form one triple bond and one single bond, Ex alkynes.
Answer:
The three major types of bond are ionic, polar covalent, and covalent bonds. Ionic occurs majorly between metals and non-metals, which allows sharing of electrons to form an ionic compound. Whereas covalent bonding calls for complete transfer of electrons between atoms. Polar covalent bonds have unequaly shared electron-pair between two atoms.
Explanation:
a. Cu (Copper)-<em> ionic bonding
</em>
b. KCl (Potassium Chloride)
- <em>ionic bonding
</em>
c. Si (Silicon)
- <em>covalent bonding
</em>
d. CdTe (Cadmium Telluride)
- <em>polar covalent bonding
</em>
e. ZnTe (Zinc Telluride)- <em>polar covalent bonding
</em>