Answer:
Total pressure = 4.57 atm
Explanation:
Given data:
Partial pressure of nitrogen = 1.3 atm
Partial pressure of oxygen = 1824 mmHg
Partial pressure of carbon dioxide = 247 torr
Partial pressure of argon = 0.015 atm
Partial pressure of water vapor = 53.69 kpa
Total pressure = ?
Solution:
First of all we convert the units other into atm.
Partial pressure of oxygen = 1824 mmHg / 760 = 2.4 atm
Partial pressure of carbon dioxide = 247 torr / 760 = 0.325 atm
Partial pressure of water vapor = 53.69 kpa / 101 = 0.53 atm
Total pressure = Partial pressure of N + Partial pressure of O + Partial pressure of CO₂ + Partial pressure of Ar + Partial pressure of water vapor
Total pressure = 1.3 atm + 2.4 atm + 0.325 atm + 0.015 atm + 0.53 atm
Total pressure = 4.57 atm
Answer:
oxygen molecule
Explanation:
I belive it is oxygen molecule
Answer:
A gas mixture containing oxygen, nitrogen, and carbon dioxide has a total pressure of 32.5 kPa.
<u>The pressure for oxygen is 3 kPa</u>
Explanation:
According to Dalton's Law of Partial Pressure total exerted by the mixture of non-reacting gases is equal to sum of the partial pressure of each gas.

So,
For , a gas mixture containing oxygen, nitrogen, and carbon dioxide has a total pressure:




Insert the values in :



Answer:
Inter-molecular forces and molecular volumes are the chief reasons for lower measured pressure
Explanation:
The kinetic theory assumes that gas particles occupy a negligible fraction of the total volume of the gas. It also assumes that the force of attraction between gas molecules is zero.
However, during high pressure, the volume of the gas particles are not negligible compare to the total gas volume and as such the volume of a real gas under such condition is higher than the Ideal gas. Vander-waal attempted to modify the ideal gas equation by subtracting the excess volume from the ideal equation. The increased volume is the reason the measured pressure of a real gas is less than an ideal gas
On the other hand, close to condensation, the other assumption of negligible forces of attraction becomes invalid. As inter-molecular distances decrease, inter-molecular forces increase reducing the bombardment of the wall of the container due to restricted particle movement and lower measured gas pressure.
Answer:
J.J. Thomson's experiments with cathode ray tubes showed that all atoms contain tiny negatively charged subatomic particles or electrons. Thomson proposed the plum pudding model of the atom, which had negatively-charged electrons embedded within a positively-charged "soup."