Answer:
The magnification is 
Explanation:
From the question we are told that
The object distance is 
The focal length is 
From the lens equation we have that

=> 
substituting values


=> 
=> 
The magnification is mathematically represented as

substituting values


Explanation:
(a) First, we will calculate the number of moles as follows.
No. of moles = 
Molar mass of helium is 4 g/mol and mass is given as 0.1 kg or 100 g (as 1 kg = 1000 g).
Putting the given values into the above formula as follows.
No. of moles = 
=
= 25 mol
According to the ideal gas equation,
PV = nRT
or, 

= 336.17 K
Hence, temperature change will be 336.17 K.
(b) The total amount of heat required for this process will be calculated as follows.
q = 
= 
= 174573.081 J/K
or, = 174.57 kJ/K (as 1 kJ = 1000 J)
Therefore, the amount of total heat required is 174.57 kJ/K.
Answer:Electricity is the flow of electrons. All matter is made up of atoms, and an atom has a center, called a nucleus. When electrons are "lost" from an atom, the free movement of these electrons constitutes an electric current. Electricity is a basic part of nature and it is one of our most widely used forms of energy.
Explanation:
Answer:
The transverse displacement is
Explanation:
From the question we are told that
The generally equation for the mechanical wave is

The speed of the transverse wave is 
The amplitude of the transverse wave is 
The wavelength of the transverse wave is 
At t= 0.150s , x = 1.51 m
The angular frequency of the wave is mathematically represented as

Substituting values


The propagation constant k is mathematically represented as

Substituting values


Substituting values into the equation for mechanical waves

Answer: option 4: A wire that is 2-mm thick and coiled.
Explanation:
The current in each wire is same. The magnetic field due to a current carrying wire increases if the wire is coiled with the more number of turns. A thick wire would cause low resistance to the current. Hence, a 2-mm thick wire which is coiled would produce the strongest magnetic field.