Answer:
-The speed of sound at 33°C is 362.8 m/s.
-The wavelength at a frequency at 5 kHz is 0.07256 m .
Explanation:
let v = 343 m/s be the speed of sound.
let T be the temperature.
then the speed of sound V, at 33°C is given by:
V = v + 0.6×T
= 343 + 0.6×33
= 362.8 m/s
Therefore, the speed of sound at 33°C is 362.8 m/s.
the wavelength at a frequency of f = 5kHz = 5000 Hz is given by:
λ = V/f
= (362.8)/(5000)
= 0.07256 m
Therefore, the wavelength at a frequency at 5 kHz is 0.07256 m .
Answer: A:The reproductive system produces hormones.
B:The reproductive system transports reproductive cells.
C:The reproductive system produces reproductive cells.
Explanation:
A:The reproductive system produces hormones. : The reproductive organs ovaries in females and testes in males produces hormones. The ovaries produce estrogen and progesterone and testes produce testosterone.
B:The reproductive system transports reproductive cells. : The ovaries in females transfers an egg into the fallopian tube and testes in males secrete sperms at the time of copulation the fertilization of egg and sperm leads to the development of zygote the precursor of new life.
C:The reproductive system produces reproductive cells.: The ovaries undergo oogenesis and in testes spermatogenesis takes place to develop egg and sperms respectively.
Answer:
<h3>
2.3125m/s²</h3>
Explanation:
Using the equation of motion v² = u²+2aS
v is the final velocity = 120km/hr
120km/hr = 120 * 1000/1 * 3600 = 33.3m/s
u is the initial velocity = 0m/s
a is the acceleration
S is the distance covered = 240m
On substituting the given parameters
33.3² = 0²+2a(240)
33.3² = 480a
1110 = 480a
a = 1110/480
a = 2.3125m/s²
Hence the minimum constant acceleration that the aircraft require to be airborne after a takeoff run of 240 m is 2.3125m/s²
Momentum of the wagon increases by (200 x 3)
= 600 newton-sec
= 600 kg-m/sec
Here is your answer
Answer :- two(2)