Answer:
O volume of the solution
Explanation:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / volume of solution in L
For example:
if we dissolve the 1 mole of NaCl to make the solution of volume 2 L. The molarity of solution is,
M = 1 mol / 2 L
M = 0.5 M
We can use the dilution formula to find the volume of the diluted solution to be prepared
c1v1 = c2v2
Where c1 is concentration and v1 is volume of the concentrated solution
And c2 is concentration and v2 is volume of the diluted solution to be prepared
Substituting the values in the equation
15 M x 25 mL = 3 M x v2
v2 = 125 mL
The 25 mL concentrated solution should be diluted with distilled water upto 125 mL to make a 3 M solution
<u>Answer:</u> The additional information that is helpful in calculating the mole percent of XCl(s) and ZCl(s) is the molar masses of Z and X
<u>Explanation:</u>
To calculate the mole percent of a substance, we use the equation:

Mass percent means that the mass of a substance is present in 100 grams of mixture
To calculate the number of moles, we use the equation:

We require the molar masses of Z and X to calculate the mole percent of Z and X respectively
Hence, the additional information that is helpful in calculating the mole percent of XCl(s) and ZCl(s) is the molar masses of Z and X
Iridium-192 is used in cancer treatment, a small cylindrical piece of 192 Ir, 0.6 mm in diameter (0.3mm radius) and 3.5 mm long, is surgically inserted into the tumor. if the density of iridium is 22.42 g/cm3, how many iridium atoms are present in the sample?
Let us start by computing for the volume of the cylinder. V = π(r^2)*h where r and h are the radius and height of the cylinder, respectively. Let's convert all given dimensions to cm first. Radius = 0.03 cm, height is 0.35cm long.
V = π * (0.03cm)^2 * 0.35 cm = 9.896*10^-4 cm^3
Now we have the volume of 192-Ir, let's use the density provided to get it's mass, and once we have the mass let's use the molar mass to get the amount of moles. After getting the amount of moles, we use Avogadro's number to convert moles into number of atoms. See the calculation below and see if all units "cancel":
9.896*10^-4 cm^3 * (22.42 g/cm3) * (1 mole / 191.963 g) * (6.022x10^23 atoms /mole)
= 6.96 x 10^19 atoms of Ir-122 are present.