Answer: its b ;p
Step-by-step explanation:
By definition, two angles are supplementary if the sum of them is 180 degrees. In this case (see figure attached with the answer) the line AD is transversal to lines AB and DC. This is a proof of the Same-side interior angle theorem.
This theorem states that if we have two lines that are parallel and we intercept those two lines with a line that is transversal to both, same-side interior angles are formed, and also sum 180º, in other words, they are supplementary angles.
Then:
By the definition of a parallelogram, AB∥DC. AD is a transversal between these sides, so ∠A and ∠D are <em><u>same-side interior angles</u></em>. Because AB and DC are <em><u>parallel</u></em>, the same-side interior angles must be <em><u>supplementary</u></em> by the same-side interior angles theorem. Therefore, ∠A and ∠D are supplementary.
Step 1: We make the assumption that 498 is 100% since it is our output value.
Step 2: We next represent the value we seek with $x$x.
Step 3: From step 1, it follows that $100\%=498$100%=498.
Step 4: In the same vein, $x\%=4$x%=4.
Step 5: This gives us a pair of simple equations:
$100\%=498(1)$100%=498(1).
$x\%=4(2)$x%=4(2).
Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have
$\frac{100\%}{x\%}=\frac{498}{4}$
100%
x%=
498
4
Step 7: Taking the inverse (or reciprocal) of both sides yields
$\frac{x\%}{100\%}=\frac{4}{498}$
x%
100%=
4
498
$\Rightarrow x=0.8\%$⇒x=0.8%
Therefore, $4$4 is $0.8\%$0.8% of $498$498.
Percent Change = New Value − Old Value|Old Value| × 100%
Example: There were 200 customers yesterday, and 240 today:
240 − 200|200|× 100% = 40200 × 100% = 20%
A 20% increase.
Percent Error = |Approximate Value − Exact Value||Exact Value| × 100%
Example: I thought 70 people would turn up to the concert, but in fact 80 did!
|70 − 80||80| × 100% = 1080 × 100% = 12.5%
I was in error by 12.5%
(Without using the absolute value, the error is −12.5%, meaning I under-estimated the value)
The difference between the two is that one states factual calculations and the other is a theoretical guess