1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pochemuha
3 years ago
7

Do some research, and look up the difference between the zinc-carbon battery described in the lesson, and the alkaline battery (

shown at the bottom), which is another common dry cell that we use every day. What are the electrodes made of in the alkaline battery? The electrolyte? Does one type have an advantage over the other? Write a short essay.

Physics
1 answer:
jek_recluse [69]3 years ago
8 0

Answer:

Here it is:

The difference between a zinc battery and the alkaline battery is the type of electrolyte in them. Zinc batteries are mostly composed of ammonium chloride. But alkaline batteries use potassium hydroxide.

Alkaline-manganese, also known as alkaline, is an improved version of the zinc-carbon battery and delivers 1.5V. Lewis Urry (1927–2004) invented alkaline in 1949 while working with the Eveready Battery Company laboratory in Ohio, USA. Alkaline gives off more energy at higher load currents than zinc-carbon. The Canadian inventor Lew Urry patented the first modern primary alkaline battery in 1959.

The alkaline manganese battery utilizes electrodes of zinc and manganese dioxide, but the electrolyte is potassium hydroxide. The electrolyte of a battery consists of soluble salts, acids, or other bases in inside a liquid, in gelled and dry formats. The electrolyte also comes in a polymer, as used in the solid-state battery, solid ceramic, and molten salts as in the sodium-sulfur battery.

As expected, the capacity of both batteries is different. Because of the composition, an alkaline battery delivers more energy than a zinc battery. The only consequence of this is that both batteries should be used in different applications.

You might be interested in
Which statement correctly describes these electric field lines?
Otrada [13]
I don’t know, which statement ahh I see white screen lol
4 0
3 years ago
How many joules of work are done on a box when a force of 25 N pushes it 3 m?
HACTEHA [7]

Answer:

i don't know

Explanation:

sorry so much

8 0
3 years ago
3. A car has a mass of 2.50 x 10^3 kg. If the force acting on the car is 7.65 x 10^3 N to the
const2013 [10]

Answer:

3.06m/s² to the east

Explanation:

Given parameters:

Mass of car = 2.5 x 10³kg

Force acting on the car  = 7.65 x 10³N

Unknown:

Acceleration of the car  = ?

Solution:

From Newton's second law of motion:

      Force  = mass x acceleration

   Acceleration  = \frac{Force }{mass}   = \frac{7.65 x 10^{3} }{2.5 x 10^{3} }    = 3.06m/s² to the east

6 0
3 years ago
On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a 6 iron. The acceleration due to gravity on t
kozerog [31]

Answer:

a) 6 times farther.  b) 6 times longer.

Explanation:

Once released, in the horizontal direction, no other forces act on the ball, so it continues moving at the same initial velocity, which is given by the projection of the velocity vector in the horizontal direction, as follows:

vₓ = v* cos (25º) = 23 m/s * 0.906 = 20.8 m/s

In the vertical direction, the initial velocity is the projection of the velocity vector along the vertical axis, as follows:

vy = v* sin (25º) = 23 m/s * 0.422 = 9.72 m/s

Assuming that the acceleration is constant, and equal to 1/6*g, we can calculate the total time of flight, with the following kinematic equation for the vertical displacement:

y = voy*t - (\frac{1}{2}*\frac{g}{6} * t^{2} )

If the total displacement in the vertical direction is 0 (which means  that the time if the total time of flight), we can solve for t, as follows:

t = \frac{voy*12}{g} = \frac{9.72 m/s*12}{9.8m/s2} = 11. 9 s

On earth, this time could be calculated in the same way:

t = \frac{voy*12}{g} = \frac{9.72 m/s*2}{9.8m/s2} = 1.98 s

As the time is defined by the vertical movement, we can find the horizontal distance travelled on the moon, as follows:

Δx = v₀ₓ * t = 20.8 m/s * 11. 9 s = 248.1 m

On earth, the distance travelled had been as follows:

Δx = v₀ₓ * t = 20.8 m/s * 1.98 s = 41.3 m

⇒ Δx(moon) / Δx(earth) = 248.1 / 41.3 = 6.00

b) As we have just found, the time of flight on the moon and on the earth are as follows:

tmoon = 11. 9 s

tearth = 1.98 s

⇒ t(moon) / t(earth) = 11.9 / 1.98 = 6.0

8 0
3 years ago
Compare the circular velocity of a particle orbiting in the Encke Division, whose distance from Saturn 133,370 km, to a particle
Ket [755]

Answer:

The particle in the D ring is 1399 times faster than the particle in the Encke Division.

Explanation:

The circular velocity is define as:

v = \frac{2 \pi r}{T}  

Where r is the radius of the trajectory and T is the orbital period

To determine the circular velocity of both particles it is necessary to know the orbital period of each one. That can be done by means of the Kepler’s third law:

T^{2} = r^{3}

Where T is orbital period and r is the radius of the trajectory.

Case for the particle in the Encke Division:

T^{2} = r^{3}

T = \sqrt{(133370 Km)^{3}}

T = \sqrt{(2.372x10^{15} Km)}

T = 4.870x10^{7} Km

It is necessary to pass from kilometers to astronomical unit (AU), where 1 AU is equivalent to 150.000.000 Km ( 1.50x10^{8} Km )

1 AU is defined as the distance between the earth and the sun.

\frac{4.870x10^{7} Km}{1.50x10^{8}Km} . 1AU

T = 0.324 AU

But 1 year is equivalent to 1 AU according with Kepler’s third law, since 1 year is the orbital period of the earth.

T = \frac{0.324 AU}{1 AU} . 1 year

T = 0.324 year

That can be expressed in units of days

T = \frac{0.324 year}{1 year} . 365.25 days  

T = 118.60 days

<em>Circular velocity for the particle in the </em><em>Encke Division</em><em>:</em>

v = \frac{2 \pi r}{T}

v = \frac{2 \pi (133370 Km)}{(118.60 days)}

For a better representation of the velocity, kilometers and days are changed to meters and seconds respectively.

118.60 days .\frac{86400 s}{1 day} ⇒ 10247040 s

133370 Km .\frac{1000 m}{1 Km} ⇒ 133370000 m

v = \frac{2 \pi (133370000 m)}{(10247040 s)}

v = 81.778 m/s

Case for the particle in the D Ring:

For the case of the particle in the D Ring, the same approach used above can be followed

T^{2} = r^{3}

T = \sqrt{(69000 Km)^{3}}

T = \sqrt{(3.285x10^{14} Km)}

T = 1.812x10^{7} Km

\frac{1.812x10^{7} Km}{1.50x10^{8}Km} . 1 AU

T = 0.120 AU

T = \frac{0.120 AU}{1 AU} . 1 year

T = 0.120 year

T = \frac{0.120 year}{1 year} . 365.25 days  

T = 43.83 days

<em>Circular velocity for the particle in </em><em>D Ring</em><em>:</em>

v = \frac{2 \pi r}{T}

v = \frac{2 \pi (69000 Km)}{(43.83 days)}

For a better representation of the velocity, kilometers and days are changed to meters and seconds respectively.

43.83 days . \frac{86400 s}{1 day} ⇒ 3786912 s

69000 Km . \frac{1000 m}{ 1 Km} ⇒ 69000000 m

v = \frac{2 \pi (69000000 m)}{(3786912 s)}

v = 114.483 m/s

 

\frac{114.483 m/s}{81.778 m/s} = 1.399            

The particle in the D ring is 1399 times faster than the particle in the Encke Division.  

7 0
3 years ago
Other questions:
  • A runner runs 4875 ft in 6.85 minutes. what is the runners average speed in miles per hour?
    5·2 answers
  • Solar radiation is made up of light energy. Light energy can be separated by wavelength and frequency into the electromagnetic s
    5·2 answers
  • The volume of a gas is 200.0 mL at 275 K and 92.1 kPa. Find its volume at STP.
    5·1 answer
  • A lead pellet of mass 10.0g is shot horizontally into a stationary wooden block of mass 100g. The pellet hits the block with an
    13·1 answer
  • A block is at rest on the incline shown in the figure. The coefficients of static and ki- netic friction are μs = 0.62 and μk =
    11·1 answer
  • An optical disk drive in your computer can spin a disk up to 10,000 rpm (about 1045 rad/s ). If a particular disk is spun at 235
    9·1 answer
  • On February 15, 2013, a superbolide meteor (brighter than the Sun) entered Earth’s atmosphere over Chelyabinsk, Russia, and expl
    6·2 answers
  • A 100-kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope a
    15·1 answer
  • Suppose of lycerin have a temperature of 30°C. Heat is supplied to a steady rate of 100 W. The
    7·1 answer
  • Alai is comparing the physical property of two materials. He is hitting each with a hammer to observe what happens. What physica
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!