Answer:
400 kg.m/s
Explanation:
In a closed system, the principle of conservation of momentum applies. It means. the total momentum before collision equals to the total momentum after collision hence since the initial momentum is given as 400 kg.m/s, the final sum will be the same.
Answer:
1).A mixture having a uniform composition where the components can't be seen separately and all components are in the same state best describes a solution. In chemistry, a solution is a homogeneous mixture composed of two or more substances.
1. 2500/60 joules/sec
2. 2,500Nm
Answer:
B
Explanation:
The control is something that is meant to not be changed, the control is a comparison of the experimental.
Answer:
v₃ = 3.33 [m/s]
Explanation:
This problem can be easily solved using the principle of linear momentum conservation. Which tells us that momentum is preserved before and after the collision.
In this way, we can propose the following equation in which everything that happens before the collision will be located to the left of the equal sign and on the right the moment after the collision.

where:
m₁ = mass of the car = 1000 [kg]
v₁ = velocity of the car = 10 [m/s]
m₂ = mass of the truck = 2000 [kg]
v₂ = velocity of the truck = 0 (stationary)
v₃ = velocity of the two vehicles after the collision [m/s].
Now replacing:
![(1000*10)+(2000*0)=(1000+2000)*v_{3}\\v_{3}=3.33[m/s]](https://tex.z-dn.net/?f=%281000%2A10%29%2B%282000%2A0%29%3D%281000%2B2000%29%2Av_%7B3%7D%5C%5Cv_%7B3%7D%3D3.33%5Bm%2Fs%5D)