As more and more lamps are connected in parallel (and if the current does not produce heating inside the battery) their brightness stays the same. Each lamp has the same voltage across it. Each lamp added in parallel decreases the total resistance in the circuit, so additional current flows.
To increase the acceleration of the car using the same engine, the mass of the car must be decreased.
<h3>
What is Newton's first law of motion</h3>
Newton's first law of motion states that an object at rest or uniform motion in a straight line will continue in that path unless acted upon by an external force.
The first law is also called the law of inertia because it depends on the mass of the object. The greater the mass, the greater the inertia and more reluctant the object will be to move.
Thus, to increase the acceleration of the car using the same engine, the mass of the car must be decreased.
a = F/m
Learn more about Newton's law here: brainly.com/question/25545050
#SPJ1
Answer:
a) v = 6.43 m/s
b) v = 15.8 m/s
Explanation:
Speed of car = 56 km/h
56 km/h = 14.4 m/s
Angle rain makes on the glass to the vertical = 66°
Thus knowing that the opposite side of the angle is the distance moved by the car, and the adjacent side is the distance traveled by the rain in the same time
both of which are directly proportional to their velocities
Then
tan(66°) = 14.44m/s ÷ x
or x = 14.44/tan(66°)
Which is the vertical raindrop velocity of the relative to earth
v = 6.43 m/s vertically towards earth
For v relative to the car is we have vector sum of both velocities
v = √(14.44^2 + 6.43^2) = 15.8 m/s which is the velocity relative to car
= 15.8 m/s
I think it’s C b/c it works for me
Answer:
The tension in the rope is 262.88 N
Explanation:
Given:
Weight
N
Length of rope
m
Initial speed of ball 
For finding the tension in the rope,
First find the mass of rod,
(
)

kg
Tension in the rope is,


N
Therefore, the tension in the rope is 262.88 N