
<u>We </u><u>have </u><u>given </u><u>in </u><u>the </u><u>question </u><u>that</u><u>, </u>
- <u>The </u><u>sum </u><u>of </u><u>2</u><u> </u><u>numbers </u><u>is </u><u>equal </u><u>to </u><u>1</u><u>1</u><u> </u>
- <u>The </u><u>difference </u><u>between </u><u>two </u><u>numbers </u><u>is </u><u>1</u><u>9</u><u> </u><u>.</u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>value </u><u>of </u><u>x </u><u>and </u><u>y</u><u>. </u>

Let the two numbers be x and y
<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>


<u>Solving </u><u>eq(</u><u> </u><u>1</u><u> </u><u>)</u><u> </u><u>we </u><u>get </u><u>:</u><u>-</u><u> </u>


<u>Subsituting </u><u>eq(</u><u>3</u><u> </u><u>)</u><u> </u><u>in </u><u>eq</u><u>(</u><u>2</u><u>)</u><u> </u><u>:</u><u>-</u>









<u>Now</u><u>, </u><u> </u><u>Subsitute </u><u>the </u><u>value </u><u>of </u><u>y </u><u>in </u><u>eq(</u><u> </u><u>3</u><u> </u><u>)</u><u> </u><u>:</u><u>-</u>




Hence, The value of x and y are 15 and (-4) .
Question 23:
x = 4
DE = 44
Question 24:
x = 25
SE = 28
Step-by-step explanation:
As RS is the perpendicular bisector of DE, it will divide DE in two equal parts DS and SE
<u>Question number 23:</u>
Given
DS = 3x+10
SE = 6x-2
As the two segments are equal:

Subtracting 10 from both sides

subtracting 6x from both sides

Dividing both sides by -3

Now

And

<u>Question No 24:</u>
Given
DS = x+3
DE = 56
We know that:

So
DS = 
As DS is 28, SE will also be 28
Hence,
Question 23:
x = 4
DE = 44
Question 24:
x = 25
SE = 28
Keywords: Bisector, Line segment
Learn more about line segments at:
#LearnwithBrainly
Answer:
g(x) = |x-3| -4
Step-by-step explanation:
to shift right by 3, subtract three from x inside the absolute value.
to shift down by 4, subtract 4 outside of the absolute value.
g(x) = |x-3| -4
PLZ HELP IVE BEEN WAITING FOR 1HR : <span>A rectangular prism has a length of 8 in., a width of 4 in., and a height of 2 1/4 in.
The prism is filled with cubes that have edge lengths of 1/4 in.
How many cubes are needed to fill the rectangular prism?</span>