The sum of the given series can be found by simplification of the number
of terms in the series.
- A is approximately <u>2020.022</u>
Reasons:
The given sequence is presented as follows;
A = 1011 + 337 + 337/2 + 1011/10 + 337/5 + ... + 1/2021
Therefore;
The n + 1 th term of the sequence, 1, 3, 6, 10, 15, ..., 2021 is given as follows;
Therefore, for the last term we have;
2 × 2043231 = n² + 3·n + 2
Which gives;
n² + 3·n + 2 - 2 × 2043231 = n² + 3·n - 4086460 = 0
Which gives, the number of terms, n = 2020
![\displaystyle \frac{A}{2} = \mathbf{ 1011 \cdot \left(\frac{1}{2} +\frac{1}{6} + \frac{1}{12}+...+\frac{1}{4086460} \right)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7BA%7D%7B2%7D%20%20%3D%20%5Cmathbf%7B%201011%20%5Ccdot%20%20%5Cleft%28%5Cfrac%7B1%7D%7B2%7D%20%2B%5Cfrac%7B1%7D%7B6%7D%20%2B%20%5Cfrac%7B1%7D%7B12%7D%2B...%2B%5Cfrac%7B1%7D%7B4086460%7D%20%20%5Cright%29%7D)
![\displaystyle \frac{A}{2} = 1011 \cdot \left(1 - \frac{1}{2} +\frac{1}{2} - \frac{1}{3} + \frac{1}{3}- \frac{1}{4} +...+\frac{1}{2021}-\frac{1}{2022} \right)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7BA%7D%7B2%7D%20%20%3D%201011%20%5Ccdot%20%20%5Cleft%281%20-%20%5Cfrac%7B1%7D%7B2%7D%20%2B%5Cfrac%7B1%7D%7B2%7D%20-%20%20%5Cfrac%7B1%7D%7B3%7D%20%2B%20%5Cfrac%7B1%7D%7B3%7D-%20%5Cfrac%7B1%7D%7B4%7D%20%2B...%2B%5Cfrac%7B1%7D%7B2021%7D-%5Cfrac%7B1%7D%7B2022%7D%20%20%5Cright%29)
Which gives;
![\displaystyle \frac{A}{2} = 1011 \cdot \left(1 - \frac{1}{2022} \right)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7BA%7D%7B2%7D%20%20%3D%201011%20%5Ccdot%20%20%5Cleft%281%20-%20%5Cfrac%7B1%7D%7B2022%7D%20%20%5Cright%29)
![\displaystyle A = 2 \times 1011 \cdot \left(1 - \frac{1}{2022} \right) = \frac{1032231}{511} \approx \mathbf{2020.022}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20A%20%3D%202%20%5Ctimes%201011%20%5Ccdot%20%20%5Cleft%281%20-%20%5Cfrac%7B1%7D%7B2022%7D%20%20%5Cright%29%20%3D%20%5Cfrac%7B1032231%7D%7B511%7D%20%5Capprox%20%5Cmathbf%7B2020.022%7D)
Learn more about the sum of a series here:
brainly.com/question/190295
Answer:
Width: 10.5 feet
Length: 31.5 feet
Step-by-step explanation:
Let x represent width of the concrete slab.
We have been given that the length of a concrete slab is three more than three times the width. So length of the slab would be
.
We are also told that the area of slab is 330 square feet. We can represent this information in an equation as:
![x\cdot 3x=330](https://tex.z-dn.net/?f=x%5Ccdot%203x%3D330)
![3x^2=330](https://tex.z-dn.net/?f=3x%5E2%3D330)
![x^2=\frac{330}{3}](https://tex.z-dn.net/?f=x%5E2%3D%5Cfrac%7B330%7D%7B3%7D)
![x^2=110](https://tex.z-dn.net/?f=x%5E2%3D110)
Now, we will take square root of both sides.
![\sqrt{x^2}=\sqrt{110}](https://tex.z-dn.net/?f=%5Csqrt%7Bx%5E2%7D%3D%5Csqrt%7B110%7D)
![x=10.488\approx 10.5](https://tex.z-dn.net/?f=x%3D10.488%5Capprox%2010.5)
Therefore, the width of slab is approximately 10.5 feet.
The length of the slab would be
.
Therefore, the length of slab is approximately 31.5 feet.
A line of symmetry basically is like a reflection of a shape, so your answer is D.
The area of a trapezoid is basically the average width times the altitude, or as a formula:
Area = h ·
b 1 + b 2
2
where
b1, b2 are the lengths of each base
h is the altitude (height)
Recall that the bases are the two parallel sides of the trapezoid. The altitude (or height) of a trapezoid is the perpendicular distance between the two bases.
In the applet above, click on "freeze dimensions". As you drag any vertex, you will see that the trapezoid redraws itself keeping the height and bases constant. Notice how the area does not change in the displayed formula. The area depends only on the height and base lengths, so as you can see, there are many trapezoids with a given set of dimensions which all have the same area.
Answer:
35 boys
Step-by-step explanation:
hope it helps