By the second law of thermodynamics:
Heat can not spontaneously flow from cold regions to hot regions without external work being performed on a system.
Heat transfer is the passage of thermal energy from a hot ( t B = 80° C ) to a colder body ( t A = 40° C ).
Answer: B ) Heat flows from object B to object A.
Answer:
class sum (
public static void sumofvalue (int m, int n, int p)
{
System.out.println(m);
System.out.println(n);
System.out.println(p);
int SumValue=m+n+p;
System.out.println("Average="+Sumvalue/3);
}
)
Public class XYZ
(
public static void main(String [] args)
{
sum ob=new sum();
int X=3;
int X=4;
int X=5;
ob.sumofvalue(X,Y,Z);
int X=7;
int X=8;
int X=10;
ob.sumofvalue(X,Y,Z);
}
)
Explanation:
The above program is made in Java, in which first we have printed value in a separate line. After that, the average value of those three values has been printed according to the question.
The processing of the program is given below in detail
* The first one class named 'sum' has been created which contains the function to print individual value and the average of those three values.
* In seconds main class named 'XYZ', the object of that the above class had been created which call the method of the above class to perform functions.
* In the main class values are assigned to variables X, Y, Z.
Answer:
light with a high enough intensity
Explanation:
The answer is b) the highest occupied orbital is a “d”orbital.
Transition metals are metals where the highest energy electrons partially fill the d subshells. There are some elements with complete d subshells but on forming cations they have incomplete d subshells.
These transition metals have some properties that are different from the other metals .
Answer: 323.61 g of
will be produced
Explanation:
The given balanced chemical reaction is :

According to stoichiometry :
2 moles of
require 1 mole of 
Thus 3.00 moles of
will require=
of 
Thus
is the limiting reagent as it limits the formation of product.
As 2 moles of
give = 2 moles of 
Thus 3.00 moles of
give =
of 
Mass of 
Thus 323.61 g of
will be produced from the given moles of both reactants.