The output density is given as kg/m 3, lb/ft 3, lb/gal(US liq) and sl/ft 3. Specific weight is given as N/m 3 and lb f / ft 3.
According to law of conservation of mass.
In a chemical reaction Mass is neither created nor destroyed.
- Mass of product =Mass of reactant
#1
Mass of water

#2
Mass of sulphur:-

Answer:
- Third choice:<em> energy present in the glucose and oxygen that is not needed for the formation of carbon dioxide and water is released to form energy/ATP.</em>
Explanation:
<u>1) Chemical equation (given):</u>
- C₆H₁₂O₆ + 6 O₂ --> 6 CO₂ + 6 H₂O + energy
<u>2) Chemical potential energy:</u>
Each compound stores chemical potential energy. This energy is stored in the chemical bonds.
Due to every substance has its own unique chemical potential energy, when a chemical reaction takes plase, yielding to the change of some substances, some energy is absorbed (when bonds are formed) and some energy is released (when bonds are broken).
<u>3) Conservation of energy:</u>
Then, if the sum of the bond energies of the final products is less than the sum of the bond energies of the reactants, the<em> law of conservation of energy</em> rules that the difference between the total energies of the products and reactants must be released to the surroundings.
That is what is happening in the given reaction:
- C₆H₁₂O₆ + 6 O₂ --> 6 CO₂ + 6 H₂O + energy
The term energy in the product side means that energy is conserved because it is being released due to the the glucose and oxygen (reactant side) have more energy stored in their bonds than the energy needed for the formation of carbon dioxide and water, so that excess of energy is released to form energy/ATP.
<u>Summarizing:</u>
- The energy on the product side added to the energy of carbon dioxide and water equals the energy of the glucose and oxygen and the final balance is:
- ∑ Energy of the reactants = ∑energy of the products + released energy, supporting the law of conservation of energy.
Answer:
ver explicacion
Explanation:
Los orbitales híbridos se obtienen mediante una combinación de orbitales atómicos.
En un átomo de carbono con hibridación sp3, el átomo de carbono es tetraédrico con un ángulo de enlace de 109,5 grados. Se pueden unir cuatro enlaces simples al átomo de carbono. Se pueden unir un total de cuatro átomos al carbono. Se puede unir un total de cuatro átomos al carbono, lo que ocurre en alcanos como el metano
Para un átomo de carbono con hibridación sp2, hay dos enlaces dobles y dos enlaces simples unidos al átomo de carbono que tiene una geometría plana trigonal con un ángulo de enlace de 120 grados. Se pueden unir un total de dos átomos al carbono. Se pueden unir un total de dos átomos al carbono. Esto ocurre en alquenos como el eteno.
Un átomo de carbono con hibridación sp tiene un ángulo de enlace de 180 grados y tiene una geometría lineal con un enlace triple y un enlace sencillo. Solo se puede unir un átomo al carbono. Esto ocurre en alquinos como el etino.
Pv=nRT
where,p=199, R(constant)=8.314, V=4.67 T=30C=293K
n=pv/RT=0.38 moles