Answer:
Explanation:
moler mass of Cu is 63.546 g/mol. Since 63.546 g of copper has 6.022 x 10 power(23) atoms (Avogadro's number). = 9.5 x 10(power)21 atoms of copper.
Answer:
5 in celcius is 41 in fahrenheit!
Explanation:
Answer:
=1.666 liters
Explanation:
1 mole of a has at standard temperature and pressure occupies a volume of 22.4 liters.
0.5 moles of nitrogen occupy a volume of (0.5 moles×22.4 dm³/mol)/ 1
=11.2 liters.
Standard pressure= 1 atmosphere (Atm)
Standard temperature = 273.15 Kelvin
According to Combined gas equation, P₁V₁/T₁=P₂V₂/T₂
Let us take the conditions under standard conditions as the reference, with the subscript 1 and the conditions under the 5L container to be scenario 2 with subscript 2.
Therefore P₂ =P₁V₁T₂/T₁V₂
Substituting for the values we get:
P₂= (1 atm× 11.2L ×203K)/ (273K×5L)
=1.666 atm
Basically this is used in calculating the nuclear binding energy by converting the mass defect (calculated first) to energy and if we recall, Einstein's equation E=mc2 is the perfection equation to use because E=mc2 in which E represents units of energy, m represents units of mass, and c 2 is the speed of light squared.
Does mass<span> alone provide no information about the amount or size of a measured quantity? No, we need combine </span>mass<span> and </span>volume<span> into "one equation" to </span>determine<span> "</span>density<span>" provides more ... </span>g/mL<span>. An </span>object has<span> a mass of </span>75 grams<span> and a volume of </span>25 cc<span>. ... A </span>certain object weighs 1.25 kg<span> and </span>has<span> a </span>density of<span> </span>5.00 g/<span>mL</span>