If you put something in water its not wet until you pull it out of the water.
Wilhelm Conrad Roentgen was a German scientist who discovered x-rays through the use of Crookes tube, a tube he used in studying cathode rays that emitted new kinds of invisible ray that was capable of penetrating through a black paper.
After hearing such discovery, Henri Becquerel, a French scientist had also took interest in the connection between the phosphoresence he had already been investigating and the newly discovered rays. He thought that the phosphoresence uranium salts he had been observing and studying might absorb sunlight and emit it as x-rays.
To test such idea which was disproved later on, Becquerel wrapped photographic plates in black paper so that sunlight could not reach them. He then placed the crystals of uranium on top of the wrapped plates and put the whole set up outside, exposed under the sun.
When he developed the plates, he saw an outline of the uranium crystals. He also placed other objects such as coins or cut out metals between the crystals and the photographic film/plate. It also turned out that he could also produced outlines of those shapes.
Answer:
Healthy ecosystems have an energy source which comes from the sun
-hope this helps! :)
Explanation:
Answer:
Nuclear fusion plays an important role in making elements that are heavier than helium.
Explanation:
Nucleosynthesis is the process by which new atomic nuclei are created from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in a process called Big Bang nucleosynthesis.
In order to synthesize a new element, there must be a change in the number of protons. We should remember that elements are known by the number of their protons as it represents their atomic number.
Elements heavier than helium are formed by nuclear nucleosynthesis in which nuclear fusion plays a very crucial role as typified by the equations shown in the question.
Answer:
5.9 kg
Explanation:
We must work backwards from the second step to work out the mass of oxygen.
1. Second step
Mᵣ: 55.84
Fe₂O₃ + 3CO ⟶ 2Fe + 3CO₂
m/kg: 7.0
(a) Moles of Fe

(b) Moles of CO

However, this is the theoretical yield.
The actual yield is 72. %.
We need more CO and Fe₂O₃ to get the theoretical yield of Fe.
(c) Percent yield

We must use 261 mol of CO to get 7.0 kg of Fe.
2. First step
Mᵣ: 32.00
2C + O₂ ⟶ 2CO
n/mol: 261
(a) Moles of O₂

(b) Mass of O₂

However, this is the theoretical yield.
The actual yield is 71. %.
We need more C and O₂ to get the theoretical yield of CO.
(c) Percent yield

We need 5.9 kg of O₂ to produce 7.0 kg of Fe.