Well, if he walked one and three fourths miles five times, all you have to do is multiply one and three fourths and five to get your answer.
If a2 -2ab + b2 = 9 and a![\begin{gathered} a^2-2ab+b^2=9 \\ aStep 1 factorize[tex]\begin{gathered} a^2-2ab+b^2=(a-b)^2 \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20a%5E2-2ab%2Bb%5E2%3D9%20%5C%5C%20a%3C%2Fp%3E%3Cp%3E%EF%BB%BFStep%201%20%3C%2Fp%3E%3Cp%3Efactorize%3C%2Fp%3E%5Btex%5D%5Cbegin%7Bgathered%7D%20a%5E2-2ab%2Bb%5E2%3D%28a-b%29%5E2%20%5C%5C%20%20%5Cend%7Bgathered%7D)
then
[tex]\begin{gathered} (a-b)^2=9 \\ \sqrt{(a-b)^2}=\sqrt{9} \\ a-b=\pm3 \\ \\ aa-b=-3
The formula is
A=p (1+r/k)^kt
A future value 3000
P present value 150
R interest rate 0.025
T time?
3000=150 (1+0.025/12)^12t
Solve for t
3000/150=(1+0.025/12)^12t
Take the log
Log (3000/150)=log (1+0.025/12)×12t
12t=Log (3000/150)÷log (1+0.025/12)
T=(log(3,000÷150)÷log(1+0.025÷12))÷12
T=119.95 years