In normal conditions, warm water does "pile up" in the" Western Pacific Ocean.
Do you mean which one out of water and carbon tetrachloride
if so it will be water
Answer:
im pretty sure the answer to your question is false sorry if its wrong.
Explanation:
<h3>
Answer:</h3>
1.9 moles
<h3>
Explanation:</h3>
Carbon dioxide (CO₂) is a compound that is made up of carbon and oxygen elements.
It contains 2 moles of oxygen atoms and 1 mole of carbon atoms
Therefore;
We would say, 1 mole of CO₂ → 2 moles of Oxygen atoms + 1 mole of carbon atoms
Thus;
If a sample of CO₂ contains 3.8 moles of oxygen atoms we could use mole ratio to determine the moles of CO₂
Mole ratio of CO₂ to Oxygen is 1 : 2
Therefore;
Moles of CO₂ = 3.8 moles ÷ 2
= 1.9 moles
Hence, the moles of CO₂ present in a sample that would produce 3.8 moles of Oxygen atoms is 1.9 moles
Answer: First, here is the balanced reaction: 2C4H10 + 13O2 ===> 8CO2 + 10H2O.
This says for every mole of butane burned 4 moles of CO2 are produced, in other words a 2:1 ratio.
Next, let's determine how many moles of butane are burned. This is obtained by
5.50 g / 58.1 g/mole = 0.0947 moles butane. As CO2 is produced in a 2:1 ratio, the # moles of CO2 produced is 2 x 0.0947 = 0.1894 moles CO2.
Now we need to figure out the volume. This depends on the temperature and pressure of the CO2 which is not given, so we will assume standard conditions: 273 K and 1 atmosphere.
We now use the ideal gas law PV = nRT, or V =nRT/P, where n is the # of moles of CO2, T the absolute temperature, R the gas constant (0.082 L-atm/mole degree), and P the pressure in atmospheres ( 1 atm).
V = 0.1894 x 0.082 x 273.0 / 1 = 4.24 Liters.
Explanation: