Answer:

Explanation:
Hello!
In this case, since the ideal gas equation is used under the assumption of no interaction between molecules and perfectly sphere-shaped molecules but the van der Waals equation actually includes those effects, we can compute each pressure as shown below, considering the temperature in kelvins (22.3+273.15=295.45K):

Next, since the VdW equation requires the molar volume, we proceed as shown below:

Now, we use its definition:

Thus, by plugging in we obtain:

Thus, the pressure difference is:

Best regards!
Answer:Boiling water is a physical change, as it rearranges molecules but does not affect the internal structures. Boiling water forces the water molecules away from each other as the liquid changes to vapor. In a chemical change, new chemical substances are created or formed. Advertisement. Physical changes affect the state of an item, and a chemical change happens at a molecular level.
Explanation:
hope it helps:))
The wt% of KOH = 45%
This implies that there is 45 g of KOH in 100 g of the solution
Density of the solution is given as 1.45 g/ml
Therefore, the volume corresponding to 100 g of the solution is
= 100 g * 1 ml /1.45 g = 68.97 ml = 0.069 L
Now concentration of the concentrated KOH solution is:
Molarity = moles of KOH/vol of solution
= (45 g/56.105 g.mol-1)/0.069 L = 11.6 M
Thus,
Initial KOH concentration M1 = 11.6 M
Initial volume = V1
Final concentration M2 = 1.20 M
Final volume V2 = 250 ml
M1*V1= M2*V2
V1 = M2*V2/M1 = 1.20*250/11.6 = 25.9 ml = 26 ml
Answer:
15.17 g
Explanation:
To answer this, we need to find the molar mass of nickel in nickel (II) fluoride. The formula for nickel (II) fluoride is NiF2. This gives us the molar mass of 96.69 g. The mass percentage of nickel is 60.70% approximately (as we divide the molar mass of nickel by that of nickel (II) fluoride), and 60% of 25g gives us 15.17 g
Answer:
2nd option
Explanation:
Molarity is the number of moles of the solute (NaCl) in 1 litre of the solution (NaCl solution).
Given: concentration= 232g/ L
what we are trying to achieve is __mol/ L.
So in 1 litre, we have 232g of NaCl.
To convert mass to mole, we divide it by the Mr.
Given that the Mr is 58g/mol,
number of moles
= 232 ÷58
= 4
Thus, 1 litre has 4 moles of NaCl.
Therefore, the molarity is 4.0 mol/L.