The solutions of the quadratic equation x² - 5x - 36 = 0 are -4 and 9.
The graph is attached below.
- We are given a quadratic function.
- A polynomial equation of degree two in one variable is a quadratic equation.
- The function given to us is :
- y = x² - 5x - 36
- We need to find the solution of the quadratic function.
- To find the roots, let y = 0.
- x² - 5x - 36 = 0
- Use the quadratic formula.
- In elementary algebra, the quadratic formula is a formula that gives the solution(s) to a quadratic equation.
- x = [-b±√b²-4ac]/2a
- x = [-(-5) ± √25 - 4(1)(-36)]/2(1)
- x = (5 ± √25 + 144)/2
- x = (5 ± √169)/2
- x = (5 ± 13)/2
- x = 9 or x = -4
To learn more about functions, visit :
brainly.com/question/12431044
#SPJ1
Let n represent the number.
1/3n = n - 12
Answer:
irrational
Step-by-step explanation:
rational is if its repeating like (1.11111111) irrational if its (1.2464383252222)
By definition of circumference, the length of the arc EF (radius: 6 in, central angle: 308°) shown in red is approximately equal to 32.254 inches.
<h3>How to calculate the length of an arc</h3>
The figure presents a circle, the arc of a circle (s), in inches, is equal to the product of the <em>central</em> angle (θ), in radians, and the radius (r), in inches. Please notice that a complete circle has a central angle of 360°.
If we know that θ = 52π/180 and r = 6 inches, then the length of the arc CD is:
s = [(360π/180) - (52π/180)] · (6 in)
s ≈ 32.254 in
By definition of circumference, the length of the arc EF (radius: 6 in, central angle: 308°) shown in red is approximately equal to 32.254 inches.
<h3>Remark</h3>
The statement has typing mistakes, correct form is shown below:
<em>Find the length of the arc EF shown in red below. Show all the work.</em>
To learn more on arcs: brainly.com/question/16765779
#SPJ1