Answer:
The reactive part of a circuit changes electrical energy into another form of energy.
Explanation:
The reactive part of a circuit changes electrical energy into another form of energy.
The inductive part of a circuit changes electrical energy to magnetic energy and the capacitive part of a circuit changes electrical energy to electrostatic energy.
The jogger's average speed 1.03 m/s
<h3>
The Speed and the Velocity of a Particle in a Circle</h3>
The speed of a particle is a circle will always be constant while the velocity will not. That is, velocity varies.
Given that a jogger jogs around a circular track with a diameter of 275 m in 14.0 minutes. First convert the minutes to seconds
Given parameters are;
- Time t = 14 minutes = 14 x 60s = 840 s
Speed V = 2πr ÷ t
V = ( 2 × π × 137.5 ) ÷ 840
V = 863.9 / 840
V = 1.028 m/s
Therefore, the jogger's average speed 1.03 m/s approximately
Learn more about Circular Motion here: brainly.com/question/20905151
#SPJ1
S= 1/2 x 182 x t = 1688.3
t = 1688.3 / 91
time = 18.55 seconds
Answer:
the wavelength λ of the light when it is traveling in air = 560 nm
the smallest thickness t of the air film = 140 nm
Explanation:
From the question; the path difference is Δx = 2t (since the condition of the phase difference in the maxima and minima gets interchanged)
Now for constructive interference;
Δx= 
replacing ;
Δx = 2t ; we have:
2t = 
Given that thickness t = 700 nm
Then
2× 700 =
--- equation (1)
For thickness t = 980 nm that is next to constructive interference
2× 980 =
----- equation (2)
Equating the difference of equation (2) and equation (1); we have:'
λ = (2 × 980) - ( 2× 700 )
λ = 1960 - 1400
λ = 560 nm
Thus; the wavelength λ of the light when it is traveling in air = 560 nm
b)
For the smallest thickness 
∴ 



Thus, the smallest thickness t of the air film = 140 nm
Answer
given,
speed of car = 60 km/hr
= 60 x 0.278 m/s
= 16.68 m/s
radius of the tire = 25 cm = 0.25 m
time taken to stop = 6 s
average acceleration = ?


average acceleration= 
= 
= 11.12 rad/s²
correct answer option D
b) length of sea saw = 10 m
mass of jack = 100 Kg
mass of Jill = 60 Kg
Let y be the distance from the Jack. To balance the seesaw moment on both side should balance each other about fulcrum
now,
100 x y = 5 x 60
y = 3 m
the correct answer is option B