Answer:
0.07756 m
Explanation:
Given mass of object =0.20 kg
spring constant = 120 n/m
maximum speed = 1.9 m/sec
We have to find the amplitude of the motion
We know that maximum speed of the object when it is in harmonic motion is given by
where A is amplitude and
is angular velocity
Angular velocity is given by
where k is spring constant and m is mass
So 

This next statement is a big deal. It should be up on a board, surrounded
by flashing red and yellow lights, and hung on the wall of every Science
classroom. Although we never see it in our daily lives, it's fundamental to
the workings of the universe, and it's also Newton's first law of motion:
<em>Without friction, it doesn't take <u>ANY</u> force to keep a moving object
moving. </em><em>Force is only required to <u>change</u> the object's speed, or to
<u>change</u> the direction </em><em>in which it's moving.</em>
The answer to the question is: On a level road, and neglecting any friction,
the engine doesn't have to supply ANY force to keep the car going at the
same speed.
Answer:
3540.5N
Explanation:
Step one:
given data
mass m= 0.196kg
speed v= 31m/s
distance r= 5.32cm = 0.0532m
Step two
The expression relating force, mass, velocity and distance is
F= mv^2/r
substitute we have
F=0.196*31^2/0.0532
F=0.196*961/0.0532
F=188.356/0.0532
F=3540.5N
Fortunately, 'force' is a vector. So if you know the strength and direction
of each force, you can easily addum up and find the 'resultant' (net) force.
When we talk in vectors, one newton forward is the negative of
one newton backward. Hold that thought, while I slog through
the complete solution of the problem.
(100 N forward) plus (50 N backward)
= (100 N forward) minus (50 N forward)
= 50 N forward .
That's it.
Is there any part of the solution that's not clear ?