Answer:
The work done against gravity is 78.4 J
Explanation:
The work is calculated by multiplying the force by the distance that the
object moves
W = F × d, where W is the work , F is the force and d is the distance
The SI unit of work is the joule (J)
We need to find the work done against gravity when lowering a
16 kg box 0.50 m
→ F = mg
→ m = 16 kg, and g = 9.8 m/s²
Substitute these value in the rule
→ F = 16 × 9.8 = 156.8 N
→ W = F × d
→ F = 156.8 N and d = 0.50
Substitute these values in the rule
→ W = 78.4 J
<em>The work done against gravity is 78.4 J</em>
Answer:
g = 5 m/s square
Explanation:
Weight(W), Mass(m), Gravity(g)
W = mg
1,000N = 200g
g = 1000/200
g = 5 m/s square
Answer:
C)You should use the thin cooking twine.
Explanation:
A)You can choose either because they are the same length and will produce the same wave speed.
B)You should use the heavy rope.
C)You should use the thin cooking twine.
The speed of wave in a string is given by the following formula:
|
| = 
Where |
| = speed of wave,
= tension in the string, and μ = mass per length of the string.
<em>Even though the two strings have the same length, the μ (mass/length) for the heavy rope will be more than the that of a thin rope. Consequently, the </em>
<em>:μ for the thin rope will be higher than that of the heavy rope and as such, gives a bigger |</em>
<em>|. </em>
Therefore, the thin rope should be used in order to get a faster wave speed in the telephone.
The correct option is C.
In order to tell a river lock attendant that you wish to go through the lock, you should <span>sound one prolonged blast followed by one short blast.
You should wait about 400 feet away from the lock and wait for the flashing light signal that allows you to enter.
Also note that </span><span>commercial traffic always have the first priority in entering the locks.</span>