Answer:
I'm not sure..but please refer to your teacher later.
Answer: Based on Newton's First law of motion (where inertia is involved), smooth ice increases the forceused to accelerate the hockey puck.
Explanation;
- smooth ice reduces the resistances between the surface of the figure skates and the ice itself.
- based on inertia theory ; the heavier the weight, the larger the inertia.. which explains it takes alot of force to move a heavier object than the lighter ones.. it also hard to *stop* the motion of heavier objects than the lighter ones.
- now let's look at the design of the player shoe itself, they have a sharp blade at the bottom of the figure stakes.. which takes us to the law of the force.. the smaller the surface area, the more forces acting on it. So, players force (weight, F= mg) acts on the tip of the blade and on the ice
- high inertia (run fast) and high force (attack opponent and pass puck) enables them to perform well in playing hockey
- Thus if there's no resistance and the inertia of the player is high then they could run and pass the puck quickly
Answer:
when you are pushing the pedal you are causing the pedal to move done and then you will move 100cm
Explanation:
10 cm= 100 cm moved so when you move you will move because you are timeing the 10 by 100 to get the spped
Answer:
F_Balance = 46.6 N ,m' = 4,755 kg
Explanation:
In this exercise, when the sphere is placed on the balance, it indicates the weight of the sphere, when another sphere of opposite charge is placed, they are attracted so that the balance reading decreases, resulting in
∑ F = 0
Fe –W + F_Balance = 0
F_Balance = - Fe + W
The electric force is given by Coulomb's law
Fe = k q₁ q₂ / r₂
The weight is
W = mg
Let's replace
F_Balance = mg - k q₁q₂ / r₂
Let's reduce the magnitudes to the SI system
q₁ = + 8 μC = +8 10⁻⁶ C
q₂ = - 3 μC = - 3 10⁻⁶ C
r = 0.3 m = 0.3 m
Let's calculate
F_Balance = 5 9.8 - 8.99 10⁹ 8 10⁻⁶ 3 10⁻⁶ / (0.3)²
F_Balance = 49 - 2,397
F_Balance = 46.6 N
This is the balance reading, if it is calibrated in kg, it must be divided by the value of the gravity acceleration.
Mass reading is
m' = F_Balance / g
m' = 46.6 /9.8
m' = 4,755 kg