The answer for this would be B!!
Answer:
They have a dual wave-particle nature.
Explanation:
Electromagnetic waves consist of periodic oscillations of electric and magnetic field in a plane perpendicular to the direction of motion of the wave (in fact, they are also classified as transverse waves).
Electromagnetic waves have a wave nature, however they also have particle nature - in fact, it has been proved in some experiment (e.g. photoelectric effect) that in some conditions they act as packets of particles - called photons. Therefore, the option
They have a dual wave-particle nature.
is correct.
Other options are wrong because:
They are all invisible. --> False because visible light (which is part of the electromagnetic spectrum, so they are electromagnetic waves) is visible
They can only travel without a medium. --> False because they can also travel in a vacuum
They are slower than sound waves. --> False because they travel much faster (they travel at the speed of light in a vacuum,
, while sound travels at 343 m/s in air, for instance)
Answer:
As a result, light travels fastest in empty space, and travels slowest in solids. In glass, for example, light travels about 197,000 km/s.
Explanation:
Answer:
(a) B = 2.85 ×
Tesla
(b) I = I = 0.285 A
Explanation:
a. The strength of magnetic field, B, in a solenoid is determined by;
r = 
⇒ B = 
Where: r is the radius, m is the mass of the electron, v is its velocity, q is the charge on the electron and B is the magnetic field
B = 
= 
B = 2.85 ×
Tesla
b. Given that; N/L = 25 turns per centimetre, then the current, I, can be determined by;
B = μ I N/L
⇒ I = B ÷ μN/L
where B is the magnetic field, μ is the permeability of free space = 4.0 ×
Tm/A, N/L is the number of turns per length.
I = B ÷ μN/L
= 
I = 0.285 A