Answer:
The period of rotation is
T=8.025s
Explanation:
The person is undergoing simple harmonic motion on the wheel
Given data
mass of the person =75kg
Radius of wheel r=16m
Velocity =8.25m/s
The oscillating period of simple harmonic motion is given as
T=(2*pi)/2=2*pi √r/g
Assuming that g=9.81m/s
Substituting our data into the expression we have
T=2*3.142 √ 16/9.81
T=6.284*1.277
T=8.025s
Answer:
The maximum mass the bar can support without yielding = 32408.26 kg
Explanation:
Yield stress of the material (
) = 200 M Pa
Diameter of the bar = 4.5 cm = 45 mm
We know that yield stress of the bar is given by the formula
Yield Stress = 
⇒
=
---------------- (1)
⇒ Area of the bar (A) =
×
⇒ A =
× 
⇒ A = 1589.625 
Put all the values in equation (1) we get
⇒
= 200 × 1589.625
⇒
= 317925 N
In this bar the
is equal to the weight of the bar.
⇒
=
× g
Where
is the maximum mass the bar can support.
⇒
= 
Put all the values in the above formula we get
⇒
= 
⇒
= 32408.26 Kg
There fore the maximum mass the bar can support without yielding = 32408.26 kg
Evaporation (or another word to use is water vapor.)
Answer:
Average force = 3.5 kN
Explanation:
Given:
Mass of Jennifer (m) = 50 kg
Initial velocity = 35 m/s
Time taken to stop body = 0.5 s
Find:
Average force
Computation:
v = u + at
0 = 35 + a(0.5)
Acceleration (a) = - 70 m/s² = 70 m/s²
Average force = ma
Average force = (50(70)
Average force = 3500 N
Average force = 3.5 kN
its the 3rd option!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!