Light travels in waves AND in bundles called "photons".
It's hard to imagine something that's a wave and also a bundle.
But it turns out that light behaves like both waves and bundles.
If you design an experiment to detect waves, then it responds to light.
And if you design an experiment to detect 'bundles' or particles, then
that one also responds to light.
Answer: The mass of the sculpture is 11.8kg
Explanation:
Using the equation of fundamental frequency of a taut string.
f = (1/2L)*√(T/μ) .... (Eqn1)
Where
f= frequency in Hertz =80Hz
T = Tension in the string = Mg
M represent the mass of the substance (sculpture) =?
g= 9.8m/s^2
L= Length of the string=90cm=0.9m
μ= mass density = mass of string /Length of string
mass of string =5g=0.005kg
L=0.9m
μ=0.005/0.9 = 0.0056kg/m
Using (Eqn1)
80= 1/(2*0.9) √(T/0.0056)
144= √(T/0.0056)
Square both sides
20736= T/0.0056
T= 116.12N
Recall that T =Mg
116.12= M * 9.8
M=116.12/9.8
M= 11.8kg
Therefore the mass of the sculpture is 11.8kg
Answer:
An electric motor transforms mechanical energy into electrical energy. An electric motor transforms chemical energy into mechanical energy. An electric motor transforms mechanical energy into chemical energy.
Explanation:
Answer:
q2 = -1.61*10^-5 C.
Explanation:
It was given that,
F = 0.985N
q1 = +8.40 X10-6 C
q2 = ?
r = 1.11 m
k = 9 x 10^9 (standard)
It generally follows that, if force is attractive, charge will be negative.
force, F = kq1q2/r^2
0.985 = 9*10^9*8.40*10^-6*q2/1.11^2
75600q2 = 0.985*1.11^2
75600q2 = 1.2136
q2 = 1.2136/75600 = 1.60529
q2 = -1.61*10^-5 C.