Answer:
2.47 m
Explanation:
Let's calculate first the time it takes for the ball to cover the horizontal distance that separates the starting point from the crossbar of d = 52 m.
The horizontal velocity of the ball is constant:
and the time taken to cover the horizontal distance d is
So this is the time the ball takes to reach the horizontal position of the crossbar.
The vertical position of the ball at time t is given by
where
is the initial vertical velocity
g = 9.8 m/s^2 is the acceleration of gravity
And substituting t = 2.56 s, we find the vertical position of the ball when it is above the crossbar:
The height of the crossbar is h = 3.05 m, so the ball passes
above the crossbar.
Raising the temperature results in the radiator giving off photons of high-energy ultraviolet light. As heat is added, the radiator emits photons across a wide range of visible-light frequencies
Answer:
The maximum height the pebble reaches is approximately;
A. 6.4 m
Explanation:
The question is with regards to projectile motion of an object
The given parameters are;
The initial velocity of the pebble, u = 19 m/s
The angle the projectile path of the pebble makes with the horizontal, θ = 36°
The maximum height of a projectile, , is given by the following equation;
Therefore, substituting the known values for the pebble, we have;
Therefore, the maximum height of the pebble projectile, ≈ 6.4 m.
The first answer should be correct if not then the second one