M=energy transferred/ (temperature change*specific heat)
M= 5650/(26.6*1.0)
M=212g
No it's the quite opposite simple
Answer:
31.831 Hz.
Explanation:
<u>Given:</u>
The vertical displacement of a wave is given in generalized form as

<em>where</em>,
- A = amplitude of the displacement of the wave.
- k = wave number of the wave =

= wavelength of the wave.- x = horizontal displacement of the wave.
= angular frequency of the wave =
.- f = frequency of the wave.
- t = time at which the displacement is calculated.
On comparing the generalized equation with the given equation of the displacement of the wave, we get,

therefore,

It is the required frequency of the wave.
1. The velocity decreases, and the kinetic energy decreases.
2. An increase in temperature difference between the inside and outside of the building.
3. The total kinetic energy remains the same.
4. 76,761 J
5. The energy loss must increase.
Answer:
Pascal's law (also Pascal's principle or the principle of transmission of fluid-pressure) is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere.