1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sati [7]
3 years ago
5

The burners on this electric stove provide _________ to the flow of electric current and electricity is then converted into ____

_____ energy.
A) resistance; heat
B) a pathway; conductive
C) resistance; mechanical
D) a pathway; electromagnetic
Physics
2 answers:
frez [133]3 years ago
6 0

A is actually the correct answer i just took the test The coiled burners on this electric stove provide resistance to the flow of electric current and electricity is converted into heat energy.

patriot [66]3 years ago
6 0

Answer: The correct option is A.

Explanation:

The electric stove converts electrical energy into heat energy. The electrical energy travels through the medium. It allows the electrons to flow.

Some substance allows electrons to flow more easily while other substance gives more resistance to the flow of electrons.

The heating element in the electric stove is made up of alloy. This alloy is nichrome. It offers resistance to the flow of electrons. Heat is directly proportional to the resistance. Then, it leads to convert the electrical energy into heat energy.

Therefore, the burners on this electric stove provide resistance to the flow of electric current and electricity is then converted into heat energy.

You might be interested in
A thin, rectangular sheet of metal has mass M and sides of length a and b. Find the moment of inertia of this sheet about an axi
Lubov Fominskaja [6]

Answer:

The moment of inertia is I=\frac{M}{12} a^{2}

Explanation:

The moment of inertia is equal:

I=\int\limits^a_b {r^{2} } \, dm

If r is -\frac{a}{2}

and dm=\frac{M}{a} dr

I=\int\limits^a_b {r^{2}\frac{M}{a}  } \, dr\\a=\frac{a}{2} \\b=-\frac{a}{2}

I=\frac{M}{a} \int\limits^a_b {r^{2}  } \, dr\\\\I=\frac{M}{a} (\frac{M}{3} )_{b}^{a}\\  I=\frac{M}{3a} (\frac{a^{3} }{8} +\frac{a^{3} }{8} )\\I=\frac{M}{12} a^{2}

7 0
3 years ago
Learning Goal: To practice Problem-Solving Strategy 7.2 Problems Using Mechanical Energy II. The Great Sandini is a 60.0-kg circ
andreev551 [17]

Answer:

v = 15.8 m/s

Explanation:

Let's analyze the situation a little, we have a compressed spring so it has an elastic energy that will become part kinetic energy and a potential part for the man to get out of the barrel, in addition there is a friction force that they perform work against the movement.  So the variation of mechanical energy is equal to the work of the fictional force

    W_{fr} = ΔEm = Em_{f} -Em₀

Let's write the mechanical energy at each point

Initial

    Em₀ = Ke = ½ k x²

Final

   Em_{f} = K + U = ½ m v² + mg y

Let's use Hooke's law to find compression

    F = - k x

    x = -F / k

    x = 4400/1100

    x = - 4 m

Let's write the energy equation

    fr d = ½ m v² + mgy - ½ k x²

Let's clear the speed

   v² = (fr d + ½ kx² - mg y) 2 / m

   v² = (40 4.00 + ½ 1100 4² - 60.0 9.8 2.50)   2/60.0

   v² = (160 + 8800 - 1470) / 30

   v = √ (229.66)

   v = 15.8 m/s

5 0
3 years ago
Read 2 more answers
A tennis ball is dropped from a roof. If it takes 38.9 seconds to reach the ground, how fast is the ball moving just before it h
Ilya [14]

Answer:

The velocity of the ball before it hits the ground is 381.2 m/s

Explanation:

Given;

time taken to reach the ground, t = 38.9 s

The height of fall is given by;

h = ¹/₂gt²

h = ¹/₂(9.8)(38.9)²

h = 7414.73 m

The velocity of the ball before it hits the ground is given as;

v² = u² + 2gh

where;

u is the initial velocity of the on the root = 0

v is the final velocity of the ball before it hits the ground

v² = 2gh

v = √2gh

v = √(2 x 9.8 x 7414.73 )

v = 381.2 m/s

Therefore, the velocity of the ball before it hits the ground is 381.2 m/s

5 0
2 years ago
A person carries a box of 100 kg. What is the weight of the box? (g= 9.8 m/s2)​
aliina [53]

Answer:

980 newton

Explanation:

100×9.8 = 980

8 0
3 years ago
The barometric pressure at sea level is 30 in of mercury when that on a mountain top is 29 in. If the specific weight of air is
stealth61 [152]

To solve this problem we will apply the concepts related to pressure, depending on the product between the density of the fluid, the gravity and the depth / height at which it is located.

For mercury, density, gravity and height are defined as

\rho_m = 846lb/ft^3

g = 32.17405ft/s^2

h_1 = 1in = \frac{1}{12} ft

For the air the defined properties would be

\rho_a = 0.0075lb/ft^3

g = 32.17405ft/s^2

h_2 = ?

We have for equilibrium that

\text{Pressure change in Air}=\text{Pressure change in Mercury}

\rho_m g h_1 = \rho_a g h_2

Replacing,

(846)(32.17405)(\frac{1}{12}) = (0.0075)(32.17405)(h_2)

Rearranging to find h_2

h_2 = \frac{(846)(32.17405)(\frac{1}{12}) }{(0.0075)(32.17405)}

h = 9400ft

Therefore the elevation of the mountain top is 9400ft

7 0
3 years ago
Other questions:
  • A stone is dropped from rest from the top of a cliff into a pond below. If its initial height is 10 m, what is its speed when it
    15·1 answer
  • Which of the following is the SI unit used in measuring the temperature of a hot cup of coffee?
    15·2 answers
  • While standing on a bridge 40.0 m above the ground, you drop a stone from rest. when the stone has fallen 3.80 m, you throw a se
    11·1 answer
  • The theory that the Earth's crust and part of the upper mantle are broken into sections that move on a fluid layer of the mantle
    14·1 answer
  • A temperature if 273 k is the temperature at which water
    10·2 answers
  • Calculate the speed for a car that went a distance of 125 kilometers in 2 hours​
    8·1 answer
  • A brick of gold is 0.1 m wide, 0.1 m high, and 0.2 m long. The density of gold is 19,300 kg/m3. What pressure does the brick exe
    15·1 answer
  • If a person is driving a speed of 162 km and drive for 35 seconds. How far will they drive?
    14·1 answer
  • Velocity is an extensive property of a system. TRUE OR FALSE​
    9·2 answers
  • 1. A drag racer accelerates from rest at 18ft/sec^2. How long does it take to acquire a speed of 60mph? What is required?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!