The speed change : Δv = 0.41 m/s
<h3>Further explanation</h3>
Given
mass = 5.5 kg
Force = 15 N
time = 0.15 s
Required
the speed change
Solution
Newton 2nd's law
Impulse and momentum
F = m.a
F = m . Δv/t
F.t = m.Δv
Input the value :
15 N x 0.15 s = 5.5 kg x Δv
Δv = 0.41 m/s
Answer:
B The most basic atoms were formed due to the force of gravity.
Explanation:
Since the statement says that the atoms could have faced the peril of disintegrating into the void, this means that, they could have been destroyed by movement away into the void.
But, it also says that by now, they are feeling the influence of gravity to bring them safely together. This statement shows that gravity brings them (the atoms) together and thus doesn't allow them disintegrate into the void.
<u>So, a reader can thus infer that the most basic atoms were formed due to the force of gravity since it doesn't allow the atoms disintegrate into the void.</u>
So, B is the answer.
Answer:
Three types of thermal expansion are linear expansion,s superficial expansion,cubical expansion
According to the Bernoulli's equation,the pressure difference between the wide and narrow ends of the pipe is given by

Here,
is the velocity of water through wide ends of cylindrical pipe and
is the velocity of water through narrow ends of cylindrical pipe.
Given, 
Now from equation continuity,
.
Here,
and
are cross- sectional areas of wide and narrow ends of cylindrical pipe.
As pipe is circular, so
.
At the second point, the diameter is halved, which means the radius is also halved. Therefore,


Substituting these values with the density of water is
in pressure difference formula we get.

Acceleration is the rate of change of a the velocity of an object that is moving. This value is a result of all the forces that is acting on an object which is described by Newton's second law of motion. Calculation of such is straightforward, if we are given the final velocity, the initial velocity and the total time interval. We can just use the kinematic equations. However, if we are not given the final velocity, it would not be possible to use the kinematic equations. One possible to calculate this value would be by generating an equation of distance with respect to time and getting the second derivative of the equation.