Answer:
x=-1
Step-by-step explanation:
-12=-12(x+12)
multiply -12 and x which equals -12x
multiply -12 and 2 which equals -24
the resulting equation is -12=-12x-24
add 24 on both sides of the equation----> equals -12x=12
divide -12 on both sides of equation
x=-1
Answer:
9/10 > 78/100
Step-by-step explanation:
We can make 9/10 into 90/100, and since they now have the same denominator (Bottom number in fraction), we can now compare the numerators (Top number in fraction). 90 is greater than 78 so we can say that 9/10 > 78/100 (9/10 is greater than 78/100).
Answer:
- 891 = 3^4 · 11
- 23 = 23
- 504 = 2^3 · 3^2 · 7
- 230 = 2 · 5 · 23
Step-by-step explanation:
23 is a prime number. That fact informs the factorization of 23 and 230.
The sums of digits of the other two numbers are multiples of 9, so each is divisible by 9 = 3^2. Dividing 9 from each number puts the result in the range where your familiarity with multiplication tables comes into play.
891 = 9 · 99 = 9 · 9 · 11 = 3^4 · 11
___
504 = 9 · 56 = 9 · 8 · 7 = 2^3 · 3^2 · 7
___
230 = 10 · 23 = 2 · 5 · 23
_____
<em>Comment on divisibility rules</em>
Perhaps the easiest divisibility rule to remember is that a number is divisible by 9 if the sum of its digits is divisible by 9. That is also true for 3: if the sum of digits is divisible by 3, the number is divisible by 3. Another divisibility rule fall out from these: if an even number is divisible by 3, it is also divisible by 6. Of course any number ending in 0 or 5 is divisible by 5, and any number ending in 0 is divisible by 10.
Since 2, 3, and 5 are the first three primes, these rules can go a ways toward prime factorization if any of these primes are factors. That is, it can be helpful to remember these divisibility rules.
Answer:
<em>Answer</em><em> </em><em>is</em><em> </em><em>none</em><em> </em><em>of</em><em> </em><em>these</em><em>.</em>
<em>Answer</em><em> </em><em>is given below with explanations</em><em>. </em>
Step-by-step explanation:
<em>Given</em><em> </em><em>that</em><em> </em><em>x</em><em> </em><em>=</em><em> </em><em>-2</em><em>.</em><em>5</em>
<em>To</em><em> </em><em>find</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>x</em><em>+</em><em>13</em>
<em>Ob</em><em> </em><em>substituting</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>given equation</em><em> </em>
<em>we</em><em> </em><em>get</em><em> </em>
<em>=</em><em> </em><em>-2</em><em>.</em><em>5</em><em>+</em><em>13</em>
<em>=</em><em> </em><em>13</em><em> </em><em>-</em><em> </em><em>2</em><em>.</em><em>5</em><em> </em><em> </em><em> </em><em> </em><em>(</em><em>we</em><em> </em><em>can</em><em> </em><em>also</em><em> </em><em>write</em><em> </em><em>like</em><em> </em><em>this</em><em>)</em>
<em>=</em><em> </em><em>10</em><em>.</em><em>5</em>
<em>Therefore</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>x</em><em> </em><em>+</em><em>13</em><em> </em><em>is</em><em> </em><em>10</em><em>.</em><em>5</em>
<em>HAVE</em><em> </em><em>A NICE DAY</em><em>!</em>
<em>THANKS FOR GIVING ME THE OPPORTUNITY</em><em> </em><em>TO ANSWER YOUR QUESTION</em><em>. </em>