Answer:
0.167
Step-by-step explanation:
It is actually 0.16666666... but you round the last six to a seven.
Answer:
Pretty sure the first one is no cuz ive never seen a function curved like that
Step-by-step explanation:
Let p be the probability of success, p = 0.4.
Pr[2 success] = nC2 * p^2 * (1-p)^3 = 0.346
Pr[3 success] = nC3 * p^3 * (1-p)^2 = 0.230
Pr[4 success] = nC4 * p^4 * (1-p)^1 = 0.077
So, the probability of getting 2, 3, or 4 success, would be 0.356 + 0.230 + 0.077 = 0.663, alternatively, 66.3%.
Answer:
9/100
Step-by-step explanation:
00.9=9/100
9%
000000
000000
000
We know that (-3,5) is the location of one of the endpoints.... and we know the midpoint is at (2,-6)... .now.. what's the distance between those two guys?
![\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ -3}}\quad ,&{{ 5}})\quad % (c,d) &({{ 2}}\quad ,&{{ -6}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ d=\sqrt{[2-(-3)]^2+[-6-5]^2}\implies d=\sqrt{(2+3)^2+(-6-5)^2} \\\\\\ d=\sqrt{5^2+(-11)^2}\implies d=\sqrt{25+121}\implies d=\sqrt{146}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26%28%7B%7B%20-3%7D%7D%5Cquad%20%2C%26%7B%7B%205%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%29%0A%26%28%7B%7B%202%7D%7D%5Cquad%20%2C%26%7B%7B%20-6%7D%7D%29%0A%5Cend%7Barray%7D%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%29%5E2%20%2B%20%28%7B%7B%20y_2%7D%7D-%7B%7B%20y_1%7D%7D%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B%5B2-%28-3%29%5D%5E2%2B%5B-6-5%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%282%2B3%29%5E2%2B%28-6-5%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B5%5E2%2B%28-11%29%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B25%2B121%7D%5Cimplies%20d%3D%5Csqrt%7B146%7D)
so, the distance "d" from the midpoint to that endpoint is that much. And the distance from the midpoint to the other endpoint is the same "d" distance, because the midpoint is half-way in between both endpoints.
so, the length of AB is twice that distance, or