The scale factor is:

So you divide the corresponding lengths and the ratio you get is the scale factor. Hope it helps!
Answer:
=========
<h2>Given</h2>
<h3>Line 1</h3>
<h3>Line 2</h3>
- Passing through the points (4, 3) and (5, - 3)
<h2>To find</h2>
- The value of k, if the lines are perpendicular
<h2>Solution</h2>
We know the perpendicular lines have opposite reciprocal slopes, that is the product of their slopes is - 1.
Find the slope of line 1 by converting the equation into slope-intercept from standard form:
<u><em>Info:</em></u>
- <em>standard form is ⇒ ax + by + c = 0, </em>
- <em>slope - intercept form is ⇒ y = mx + b, where m is the slope</em>
- 3x - ky + 7 = 0
- ky = 3x + 7
- y = (3/k)x + 7/k
Its slope is 3/k.
Find the slope of line 2, using the slope formula:
- m = (y₂ - y₁)/(x₂ - x₁) = (-3 - 3)/(5 - 4) = - 6/1 = - 6
We have both the slopes now. Find their product:
- (3/k)*(- 6) = - 1
- - 18/k = - 1
- k = 18
So when k is 18, the lines are perpendicular.
Answer:
12.33
Step-by-step explanation:
6x - 2 + 9x - 3 = 180° (linear pair)
6x + 9x - 2 - 3 = 180°
15x - 5 = 180°
15x = 180 + 5
15x = 185
x = 185/15
x = 12.33
hope this helps you!
Answer:
See below.
Step-by-step explanation:
Let's look at the cost for members (C1) first. Let x be the number of visits.
C1(x) = 12 + 8x
For non-members (C2), we can do the same.
C2(x) = 10x
You can graph these two equations.
x C1 C2
0 12 0
1 20 10
2 28 20
3 36 30
4 44 40
5 52 50
6 60 60
7 68 70
Let's make the two equations equal, to find out where the benefit is the same.
12 + 8x = 10x
2x = 12
x = 6
Up to 5 visits, the non-member cost is better. At 6 visits, there's the same price. For more than 6 visits, the member cost is better.
How many points will you give?