Answer:
5.5g of ice melts when a 50g chunk of iron at 80°C is dropped into a cavity
Explanation:
The concept to solve this problem is given by Energy Transferred, the equation is given by,

Where,
Q= Energy transferred
m = mass of water
c = specific heat capacity
Temperature change (K or °C)
Replacing the values where mass is 50g and temperature is 80°C to 0°C we have,



Then we can calculate the heat absorbed by m grams of ice at 0°C, then

How Q_1=Q_2, so



Then 5.5g of ice melts when a 50g chunk of iron at 80°C is dropped into a cavity
Answer:
Hello! Your answer is BELOW
Explanation:
1.About 91.754% of all iron is iron-56. Of all nuclides, iron-56 has the lowest mass per nucleon. With 8.8 MeV binding energy per nucleon, iron-56 is one of the most tightly bound nuclei.
2.The atomic weight of lead is quite variable in nature because the three heaviest isotopes are the stable end-products of the radioactive decay of uranium (238U to 206Pb and 235U to 207Pb) and thorium (232Th to 208Pb).
3.Mass defect for uranium-238 is 3.983 × 10-25 kg.
4.Energy and Mass Are Relative
The equation E = mc^2 states that the amount of energy possessed by an object is equal to its mass multiplied by the square of the speed of light.
Hope I helped! Ask me anything if you have any questions. Brainiest plz!♥ Hope you make a 100%. Have a nice morning! -Amelia♥
Answer:
1.045 m from 120 kg
Explanation:
m1 = 120 kg
m2 = 420 kg
m = 51 kg
d = 3 m
Let m is placed at a distance y from 120 kg so that the net force on 51 kg is zero.
By use of the gravitational force
Force on m due to m1 is equal to the force on m due to m2.



3 - y = 1.87 y
3 = 2.87 y
y = 1.045 m
Thus, the net force on 51 kg is zero if it is placed at a distance of 1.045 m from 120 kg.
Answer:
(a) P = 459.055 N.
(b) the refrigerator tips.
Explanation:
Given, the angle of ramp is 20°.
When the weight of refrigerator is resolved in directions parallel and perpendicular to ramp, 75×g×sin(20°) and 75×g×cos(20°).
⇒ normal contact force is 75×g×cos(20°).
⇒ frictional force is 0.3×75×g×cos(20°) = 207.414 N
so, total opposite force is 207.414 + 75×g×sin(20°) = 459.055 N.
so, the force needed is P = 459.055 N
And as the moment due to both opposite force and P force are in same direction the refrigerator tips rather than just sliding.
It doesn't work the same as the other because one is ultraviolet while the other is infrared.