Answer:
V' = V/2
Explanation:
The voltage across a parallel plate capacitor is given as follows:
V = Q/C
where,
V = Voltage across capacitor
Q = Charge on Capacitor
C = Capacitance of Capacitor = A∈₀/d
Therefore,
V = Qd/A∈₀
where,
A = Area of plate
d = distance between plates
∈₀ = permittivity of free space
FOR CAPACITOR 1:
Q = Q
d = d
A = A
V = V
Therefore,
V = Qd/A∈₀ --------------- equation (1)
FOR CAPACITOR 2:
V' = ?
Q' = Q
d' = d
A' = 2A
Therefore,
V' = Q'd'/A'∈₀
V' = Qd/2A∈₀
V' = (1/2)(Qd/A∈₀)
using equation (1):
<u>V' = V/2</u>
Answer:
the terminal velocity v_t= 202.96 m/s≅203 m/s
Explanation:
The expression for the terminal velocity

here, C_d is the drag coefficient for the cylinder is 1.15
The surface density of the air at 20°C is
ρ_surface = 1.2041 kg/m^3
the density of air at an altitude of 39000 m
ρ= 4.3/100×39000 = 0.05177 kg/m^3
now substitute these values in equation above
we get

v_t= 202.96 m/s≅203 m/s
the terminal velocity v_t= 202.96 m/s≅203 m/s
Answer:
Explanation:
That Universe Consists of Matter
Horizontal and Vertical are the two motions that combine to produce projectile motion.