Answer:
λ = 451.7 nm
Explanation:
The expression for the constructive interference of the double diffraction experiment is
d sin θ = m λ
let's use trigonometry
tan θ = y / L
how the experiment occurs at very small angles
tan θ = sin θ / cos θ = sin θ
sin θ = y / L
we substitute
d y / L = m λ
λ =
let's calculate
λ =
λ = 4.51699 10⁻⁷ m
λ = 4.517 10⁻⁷ m (109 nm / 1m)
λ = 451.7 nm
Hello =D
This problem is about cinematic
So
V = 45 mi/h
t = 2 h
Then
V= X/t
X = V*t
Then
X = (45)*(2)
X = 90 mi
Best regards
Distance = (speed) x (time)
Distance = (20 m/s) x (500 s)
Distance = (20 x 500) (m·s / s)
Distance = 10,000 m
In another verse running to get to the team
Weight = (mass) x (acceleration of gravity at the place where the mass is) .
Man's mass = 80 kg
His weight on Earth = (80 kg) x (9.8 m/s²) = 784 newtons (about 176 pounds)
His weight on the Moon = (80 kg) x (1.63 m/s²) = <em>130.4 newtons</em> (about 29.2 pounds)
His mass is <em>80 kg</em>. Mass is the thing about him that doesn't change.
He has the same mass on the Earth, on the Moon, or anywhere.