Answer:
The force of static friction acting on the luggage is, Fₓ = 180.32 N
Explanation:
Given data,
The mass of the luggage, m = 23 kg
You pulled the luggage with a force of, F = 77 N
The coefficient of static friction of luggage and floor, μₓ = 0.8
The formula for static frictional force is,
Fₓ = μₓ · η
Where,
η - normal force acting on the luggage 'mg'
Substituting the values in the above equation,
Fₓ = 0.8 x 23 x 9.8
= 180.32 N
Hence, the minimum force require to pull the luggage is, Fₓ = 180.32 N
The highest trophic level has the least available energy in kilojoules.
Even though the food web is not shown in the question, but we know that energy decreases steadily as it is passed on from one trophic level to the next according to the second law of thermodynamics.
Energy enters into the system from the sun. The primary producers utilize this energy to produce food. As plants are eaten by animals, this energy is transferred along the food web an diminishes at each higher trophic level.
At the highest trophic level, the the least available energy in kilojoules in this food web is found.
Learn more: brainly.com/question/2233704
The answer is decompression melting
When riding a bicycle, if you stop pedaling you will still continue to move forward due to inerita.
Answer:
form
I'm pretty sure...
let me know if I'm right, if I am give brainliest