Answer:
P(bat) = V²r/(R+r)²
Explanation:
Let the resistance of the coil be R
Internal resistance of the battery be r
Emf of the battery = V
Power dissipated in the internal resistance of the battery is normally given as P = I²r
where I is the current flowing in the circuit.
From Ohm's law,
V = I R(eq)
R(eq) = (R + r)
I = V/(R+r)
P = I²r
P = [V/(R+r)]²r
P = V²r/(R+r)²
Hope this Helps!!!
Centripetal acceleration is directed along a radius so it may also be called the radial acceleration. If the speed is not constant, then there is also a tangential acceleration (at). The tangential acceleration is, indeed, tangent to the path of the particle's motion.
Answer:
![r_{cm}=[12.73,12.73]cm](https://tex.z-dn.net/?f=r_%7Bcm%7D%3D%5B12.73%2C12.73%5Dcm)
Explanation:
The general equation to calculate the center of mass is:

Any differential of mass can be calculated as:
Where "a" is the radius of the circle and λ is the linear density of the wire.
The linear density is given by:

So, the differential of mass is:


Now we proceed to calculate X and Y coordinates of the center of mass separately:


Solving both integrals, we get:


Therefore, the position of the center of mass is:
![r_{cm}=[12.73,12.73]cm](https://tex.z-dn.net/?f=r_%7Bcm%7D%3D%5B12.73%2C12.73%5Dcm)
2 pounds = 9 burgers figure out ow many 9's you can get out of 100: 100/9=11 but that only makes 99 you need 100 so we would add another one making 12. now multiply 12 by 2: 12·2=24. You would need 24 pounds of meet :)