Answer:
Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.
Explanation:
Given that
Yield strength ,Sy= 240 MPa
Tensile strength = 310 MPa
Elastic modulus ,E= 110 GPa
L=380 mm
ΔL = 1.9 mm
Lets find strain:
Case 1 :
Strain due to elongation (testing)
ε = ΔL/L
ε = 1.9/380
ε = 0.005
Case 2 :
Strain due to yielding


ε '=0.0021
Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.
For computation of load strain due to testing should be less than the strain due to yielding.
Answer:
b. The internal resistance must be much smaller than the other resistances in the circuit.
Explanation:
Ammeter is used to measure the current flowing through a circuit. It is connected in series configuration with the load. In such a scenario the resistance of the ammeter should be negligible so as to make sure that the voltage drop across the resistance of ammeter is zero and it shows the correct reading of the current in the circuit.
Answer:
the mass of the air in the classroom = 2322 kg
Explanation:
given:
A classroom is about 3 meters high, 20 meters wide and 30 meters long.
If the density of air is 1.29 kg/m3
find:
what is the mass of the air in the classroom?
density = mass / volume
where mass (m) = 1.29 kg/m³
volume = 3m x 20m x 30m = 1800 m³
plugin values into the formula
1.29 kg/m³ = <u> mass </u>
1800 m³
mass = 1.29 kg/m³ ( 1800 m³ )
mass = 2322 kg
therefore,
the mass of the air in the classroom = 2322 kg
The strength of electric field E is 17 N / C.
<u />
<u>Explanation:</u>
Electric field strength is defined as the force per unit charge acting at a point in the given field. The equation for the strength of the electric field is given by
E = F / q
where E represents the electric field strength,
F represents the force in newton,
q represents the charge in coulomb.
Given the charge q = 0.30 coulombs
force F = 5.0 N
Electric field strength E = force / charge
= 5.0 / 0.30
E = 16.66 = 17 N / C.