Well for starters, gravity keeps things down on Earth. Also, gravity applies its force on to cars to maintain stability by forcing the tires to make constant contact to the ground creating friction between the rubber and road surface allowing the car to be moved. I'm sure someone else has better ideas!
Answer:
25100A
Explanation:
t= 1ms = 0.001s
q = 25.1C
From the relationship between charge and current , the charge is equal to the product of current and time
q = i×t
Where q = charge
i = current
t = time
i = q/t = 25.1/0.001
i = 25100A.
Answer:
μ = 0.18
Explanation:
Let's use Newton's second Law, the coordinate system is horizontal and vertical
Before starting to move the box
Y axis
N-W = 0
N = W = mg
X axis
F -fr = 0
F = fr
The friction force has the formula
fr = μ N
fr = μ m g
At the limit point just before starting the movement
F = μ m g
μ = F / m g
calculate
μ = 34.8 / (19.8 9.8)
μ = 0.18
Answer:
The speed of the skier after moving 100 m up the slope are of V= 25.23 m/s.
Explanation:
F= 280 N
m= 80 kg
α= 12º
μ= 0.15
d= 100m
g= 9,8 m/s²
N= m*g*sin(α)
N= 163 Newtons
Fr= μ * N
Fr= 24.45 Newtons
∑F= m*a
a= (280N - 24.5N) / 80kg
a= 3.19 m/s²
d= a * t² / 2
t=√(2*d/a)
t= 7.91 sec
V= a* t
V= 3.19 m/s² * 7.91 s
V= 25.23 m/s
Answer:
The first graph is showing the constant acceleration (1 m/s)
Explanation:
The second graph showing the flexible velocity therefore a in the graph is different at t1, t2, t3, t4
The last graph is showing constant velocity therefore there is no acceleration (a = 0)