Answer:
10 m/s^2
Explanation:
Equation: F = ma.
a = acceleration
m = mass
F = force
Because we are trying to find acceleration instead of force we want to rearrange the equation to solve for a which is F/m = a.
F = 20
m = 2
a = ?
a = F/m
a = 20/2
a = 10 m/s^2
Answer:
1. 37.8J
2. 18 Billion Joules, 18 Gigajoules
3. 9.81 Billion Joules, 9.81 Gigajoules
Explanation:
Use the formulas provided,
KE=(1/2)mv^2 and PE=mgh, noting that g=9.81
<h2>Because kinetic energy is proportional to the velocity squared, increases in velocity will have an exponentially greater effect on translational kinetic energy. Doubling the mass of an object will only double its kinetic energy, but doubling the velocity of the object will quadruple its velocity.</h2>
Answer:
(a) -472.305 J
(b) 1 m
Explanation:
(a)
Change in mechanical energy equals change in kinetic energy
Kinetic energy is given by
Initial kinetic energy is 
Since he finally comes to rest, final kinetic energy is zero because the final velocity is zero
Change in kinetic energy is given by final kinetic energy- initial kinetic energy hence
0-472.305 J=-472.305 J
(b)
From fundamental kinematic equation

Where v and u are final and initial velocities respectively, a is acceleration, s is distance
Making s the subject we obtain
but a=\mu g hence

if they had a suitable amount to cause an interruption in the waves so huge and vast that it makes waves..... it depends because you can have any amount and get different results any day though
hope this helps plz mark me brainliest