To solve this problem it is necessary to apply the concepts of Work. Work is understood as the force applied to travel a determined distance, in this case the height. The force in turn can be expressed by Newton's second law as the ratio between mass and gravity, as well

Where,
m = mass
h = height
g = Gravitational constant
When it ascends to the second floor it has traveled the energy necessary to climb a height, under this logic, until the 4 floor has traveled 3 times the height h of each of the floors therefore

Replacing in our equation we have to

The correct answer is 4.
relation between linear velocity and angular velocity is given as

here
v = linear speed
R = radius
= angular speed
now plug in all data in the equation



so rotating speed is 60.9 rad/s
Answer:
T = 120.3 N
Explanation:
Since, the tension in the rope is acting against both the centripetal force and the weight of the stone. As both act downward towards center of the circle and tension acts towards point of support that is upward. So, tension will be equal to the sum of centripetal force and weight of the stone:
Tension = Centripetal Force + Weight of Stone
T = mv²/r + mg
where,
m = mass of stone = 5.31 kg
r = radius of circle = length of string = 2.99 m
g = 9.8 m/s²
Therefore,
T = (5.31 kg)(6.2 m/s)²/(2.99 m) + (5.31 kg)(9.8 m/s²)
T = 68.27 N + 52.03 N
<u>T = 120.3 N</u>
The correct match of each item to the clean water regulation it describes is as follows:
- Regulates pollutants discharged into surface waters: Clean water act
- Covers both surface and ground waters: Safe drinking water act
- Authorizes the EPA to establish minimum standards for tap water: Safe drinking water act
- Funds sewage treatment plants: Clean water act
<h3>What are the functions of clean water regulation?</h3>
Clean Water Act (CWA) is a regulatory body that establishes the basic structure for the regulation of pollutants discharge and maintenance of quality standards of the surface waters.
On the other hand, the Safe Drinking Water Act was founded to oversee the protection of the quality drinking water. The regulatory body is primarily concerned with potable water all waters, whether from above ground or underground sources.
Therefore, the correct match of each item to the clean water regulation it describes is as follows:
- Regulates pollutants discharged into surface waters: Clean water act
- Covers both surface and ground waters: Safe drinking water act
- Authorizes the EPA to establish minimum standards for tap water: Safe drinking water act
- Funds sewage treatment plants: Clean water act
Learn more about clean water regulation at: brainly.com/question/2142268
#SPJ1