The formula for working out speed is distance ÷ time.
55 km ÷ 2 hours = 27.5 km/h (average speed for first part of journey)
52km ÷ 5 hours = 10.4 km/h (average speed for second part of journey)
(27.5 + 10.4) ÷ 2 = 18.95 km/h (average speed throughout the journey)
PART a)
As we know that gravitational potential energy is given by the formula
here we can see that gravitational potential energy inversely varies with the distance
so here when distance from the sun is minimum then magnitude of gravitational potential energy is maximum while since it is given with negative sign so its overall value is minimum at that position
So gravitational potential energy is minimum at the nearest point and maximum at the farthest point
PART b)
Since we know that sum of kinetic energy and potential energy is constant here
so the points of minimum potential energy is the point where kinetic energy is maximum which means speed is maximum
So here speed is maximum at the nearest point
Part C)
since gravitational potential energy inversely varies with distance so it's graph will be like hyperbolic graph with distance
Answer:
The angular separation between the refracted red and refracted blue beams while they are in the glass is 42.555 - 42.283 = 0.272 degrees.
Explanation:
Given that,
The respective indices of refraction for the blue light and the red light are 1.4636 and 1.4561.
A ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of glass at 80 degrees.
We need to find the angular separation between the refracted red and refracted blue beams while they are in the glass.
Using Snell's law for red light as :
Again using Snell's law for blue light as :
The angular separation between the refracted red and refracted blue beams while they are in the glass is 42.555 - 42.283 = 0.272 degrees.
Answer:
Speed greater than 4 m/s
Explanation:
Given that Ms. Kasper is in a panic. Her cat, Penny, is stuck in a tree and about to jump out. In order to save her cat, Ms. Kasper needs to run to the tree, 12 meters away. If it takes her cat, 3 seconds to fall, how fast would Ms. Kasper have to run to save her cat?
The distance = 12 m
Time = 3s
Speed = distance/time
Speed = 12/3
Speed = 4 m/s
Ms Kasper must run at speed more than 4m/s for her to save the cat.
Answer:
conduction.
Explanation:
Hoped I helped! Im Eve btw have a great day and consider marking this brainliest if you do thank you in advanced!