1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Studentka2010 [4]
2 years ago
15

What happens to the pressure in all parts of a confined fluid if the pressure in one part is increased? The pressure in the othe

r parts remains the same.
The pressure everywhere increases by different amounts depending on the area of each part.
The pressure everywhere increases by the same amount.
The pressure everywhere decreases to conserve total pressure.
Physics
1 answer:
maw [93]2 years ago
5 0

Answer:

option C

Explanation:

the correct answer is option C

When in a confined fluid the pressure is increased in one part than the pressure will equally distribute in the whole system.

According to Pascal's law when pressure is increased in the confined system then the pressure will equally transfer in the whole system.  

This law's application is used in machines like hydraulic jacks.

You might be interested in
A transformer is used to light a lamp rated 40w, 240v from a 400v A.C supply. Calculate:
zubka84 [21]

Answer:1.81

(a) Explanation:the turn ratio= input voltage÷output voltage.

400÷220=1.81.

Don't know how to solve b part...

5 0
3 years ago
I attach a 4.1 kg block to a spring that obeys Hooke's law and supply 3.8 J of energy to stretch the spring. I release the block
borishaifa [10]

Answer:

The amplitude of the oscillation is 2.82 cm

Explanation:

Given;

mass of attached block, m = 4.1 kg

energy of the stretched spring, E = 3.8 J

period of oscillation, T = 0.13 s

First, determine the spring constant, k;

T = 2\pi \sqrt{\frac{m}{k} }

where;

T is the period oscillation

m is mass of the spring

k is the spring constant

T = 2\pi \sqrt{\frac{m}{k} } \\\\k = \frac{m*4\pi ^2}{T^2} \\\\k = \frac{4.1*4*(3.142^2)}{(0.13^2)} \\\\k = 9580.088 \ N/m\\\\

Now, determine the amplitude of oscillation, A;

E = \frac{1}{2} kA^2

where;

E is the energy of the spring

k is the spring constant

A is the amplitude of the oscillation

E = \frac{1}{2} kA^2\\\\2E = kA^2\\\\A^2 = \frac{2E}{k} \\\\A = \sqrt{\frac{2E}{k} } \\\\A =  \sqrt{\frac{2*3.8}{9580.088} }\\\\A = 0.0282 \ m\\\\A = 2.82 \ cm

Therefore, the amplitude of the oscillation is 2.82 cm

8 0
2 years ago
When two ions form a bond, the overall charge of that compound will ALWAYS become..
Maslowich

Answer:

C. Neutral

Explanation:

Ions will combine in a way that the overall ionic compound will always be neutral.

8 0
3 years ago
What kind of model is shown below?
Rudiy27
D. a foot model



btw this is a joke right cuz there ain’t no picture lol
7 0
3 years ago
It is 5.00 km from your home to the physics lab. As part of your physical fitness program, you could run that distance at 10.0 k
8_murik_8 [283]

Answer:

a. Walking burns up more energy.

b. 1740 kJ

c. This is because more intense exercise releases a lot of energy in a short period of time, whereas, less intense energy releases it energy gradually over a long period of time.

Explanation:

a. We know energy W = Pt where P = power and t = time.

Now for walking, t = d/v where d = distance = 5.00 km and v = speed = 3.00 km/hr and P = 290 W

So, t = d/v = 5.00 km/3.00 km/hr = 5/3 hr = 5/3 × 3600 s = 6000 s

W = Pt = 290 W × 6000 s = 1740000 = 1740 kJ

Now for running, t = d/v where d = distance = 5.00 km and v = speed = 10.00 km/hr

So, t = d/v = 5.00 km/10.00 km/hr = 0.5 hr = 0.5 × 3600 s = 1800 s and P = 700 W

W = Pt = 700 W × 1800 s = 1260000 = 1260 kJ

Since walking burns up 1740 kJ and running burns up 1260 kJ, walking burns up more energy.

b. It burns up 1740 kJ

c. This is because more intense exercise releases a lot of energy in a short period of time, whereas, less intense energy releases it energy gradually over a long period of time.

4 0
3 years ago
Other questions:
  • 25POINTS please answer this
    12·2 answers
  • What does the x represent on a motion graph?
    14·2 answers
  • Perfect Elastic Collisions
    10·1 answer
  • What is another name for the range of motion in your joint
    6·1 answer
  • If a positively charged body is moved against an electric field it will gain?
    11·1 answer
  • Imagine that the light you observe from space is exhibiting a redshift. This would mean that the Universe is Choose one: A. trav
    8·1 answer
  • soaring birds and glider pilots can remain aloft for hours without expending power. Discuss why this is so.
    12·1 answer
  • Calculate the moment of 3kg and 20cm away from the pivot​
    8·1 answer
  • An object with mass of 4kg is thrown with initial velocity of 20m/s from point A and follows the track of ABCD.
    10·1 answer
  • Find the wavelength of light given off by a hydrogen atom when its electron drops from the n = 4 to n = 1 energy level
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!