Answer:
1)
2)
3)
4)
Explanation:
1)
We can use the following equation:

Here, the initial velocity in the y-direction is zero, the final y position is zero and the initial y position is 25 m.


2)
The equation of the motion in the x-direction is:



3)
The velocity in the y-direction of the stone will be:



Now, the velocity in the x-direction is 15 m/s then the velocity will be:

4)
The angle of this velocity is:
Then α=55.92° negative from the x-direction.
I hope it helps you!
The student who did the most work is student 2 with 2500 Joules.
<u>Given the following data:</u>
To determine which of the students did the most work:
Mathematically, the work done by an object is given by the formula;

<u>For </u><u>student 1</u><u>:</u>

Work done = 600 Joules
<u>For </u><u>student 2</u><u>:</u>

Work done = 2500 Joules.
Therefore, the student who did the most work is student 2 with 2500 Joules.
Read more: Read more: brainly.com/question/13818347
Explanation: Newton's first law of motion states that a body at rest remains at rest, or, if in motion, remains in motion at a constant velocity unless acted on by a net external force. This is also known as the law of inertia. Inertia is the tendency of an object to remain at rest or remain in motion.
The mass of the object will remain the same rather it's on the moon or on the Earth and even in other places. But the weight will change on the moon, so its weight will be different from the one it had on Earth
Answer:
the filling stops when the pressure of the pump equals the pressure of the interior air plus the pressure of the walls.
Explanation:
This exercise asks to describe the inflation situation of a spherical fultball.
Initially the balloon is deflated, therefore the internal pressure is equal to the pressure of the air outside, atmospheric pressure, when it begins to inflate the balloon with a pump this creates a pressure in the inlet valve and as it is greater than the pressure inside, the air enters it, this is repeated in each filling cycle, manual pump.
When the ball is full we have two forces, the one created by the external walls and the one aired by the pressure of the pump, these forces are directed towards the inside, but the air molecules exert a pressure towards the outside, which translates into a force. When these two forces are equal, the pump is no longer able to continue introducing air into the balloon.
Consequently the filling stops when the pressure of the pump equals the pressure of the interior air plus the pressure of the walls.