Answer:
The ratio of the resistances of second coil to the first coil is the ratio of square of radius of the first coil to the square of radius of second coil.
And
The ratio of the resistances of fourth coil to the third coil is the ratio of square of radius of the third coil to the square of radius of fourth coil.
Explanation:
The resistance of the coil is directly proportional to the length of the coil and inversely proportional to the area of coil and hence inversely proportional to the square of radius of the coil.
So, the ratio of the resistances of second coil to the first coil is the ratio of square of radius of the first coil to the square of radius of second coil.
And
The ratio of the resistances of fourth coil to the third coil is the ratio of square of radius of the third coil to the square of radius of fourth coil.
Answer:
3600joules
Explanation:
formula :W=FS
W=work done (J)
F=force (N)
S=displacement moved in the direction of force (m)
200N×18m
=3600J
Answer:
the new resister is 11 ohms.
Explanation:
Set it up like this.
1/x + 1/1.1 = 1 Subtract 1/1.1 from both sides
1/x = 1 - 1/1.1
1 - 1/1.1 = 1/11
1/x = 1/11 Cross multiply
11 = x
If 1/11 bothers you, you could do it it another way.
1 - 1/1.1 = (1.1 - 1 ) / 1.1 = 0.1 / 1.1 Multiply top and bottom by 10
0.1*10/(1.1 * 10 ) = 1 / 11
The bag moves to the left.
This is because of Newton's third law of motion that states:
For every action force on a body, there is an opposite and equal reaction force.
Thus pushing the bag from the right makes it move to the left.