Given:
4log1/2^w (2log1/2^u-3log1/2^v)
Req'd:
Single logarithm = ?
Sol'n:
First remove the parenthesis,
4 log 1/2 (w) + 2 log 1/2 (u) - 3 log 1/2 (v)
Simplify each term,
Simplify the 4 log 1/2 (w) by moving the constant 4 inside the logarithm;
Simplify the 2 log 1/2 (u) by moving the constant 2 inside the logarithm;
Simplify the -3 log 1/2 (v) by moving the constant -3 inside the logarithm:
log 1/2 (w^4) + 2 log 1/2 (u) - 3 log 1/2 (v)
log 1/2 (w^4) + log 1/2 (u^2) - log 1/2 (v^3)
We have to use the product property of logarithms which is log of b (x) + log of b (y) = log of b (xy):
Thus,
Log of 1/2 (w^4 u^2) - log of 1/2 (v^3)
then use the quotient property of logarithms which is log of b (x) - log of b (y) = log of b (x/y)
Therefore,
log of 1/2 (w^4 u^2 / v^3)
and for the final step and answer, reorder or rearrange w^4 and u^2:
log of 1/2 (u^2 w^4 / v^3)
Answer:
a) 0.70
b) 0.82
Step-by-step explanation:
a)
Let M be the event that student get merit scholarship and A be the event that student get athletic scholarship.
P(M)=0.3
P(A)=0.6
P(M∩A)=0.08
P(not getting merit scholarships)=P(M')=?
P(not getting merit scholarships)=1-P(M)
P(not getting merit scholarships)=1-0.3
P(not getting merit scholarships)=0.7
The probability that student not get the merit scholarship is 70%.
b)
P(getting at least one of two scholarships)=P(M or A)=P(M∪A)
P(getting at least one of two scholarships)=P(M)+P(A)-P(M∩A)
P(getting at least one of two scholarships)=0.3+0.6-0.08
P(getting at least one of two scholarships)=0.9-0.08
P(getting at least one of two scholarships)=0.82
The probability that student gets at least one of two scholarships is 82%.
Answer:
The answer is 11 and 12
Step-by-step explanation:
you just find perfect squares
Answer: f(x) = 8x -1
Step-by-step explanation:
( f + g )x = 3x + 5x + 8 - 9
( f + g)x = 8x - 1
Use the formula (b/2)^2 in order to create a new term. Solve for x by using this term to complete the square.
Exact Form:
x = ±√21 + 6
Decimal Form:
x = 10.58257569…, 1.41742430…
____
I hope this helps, as always. I wish you the best of luck and have a nice day, friend..